BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 15770480)

  • 1. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster.
    Miyahisa I; Kaneko M; Funa N; Kawasaki H; Kojima H; Ohnishi Y; Horinouchi S
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):498-504. PubMed ID: 15770480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli.
    Miyahisa I; Funa N; Ohnishi Y; Martens S; Moriguchi T; Horinouchi S
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):53-8. PubMed ID: 16133333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster.
    Hwang EI; Kaneko M; Ohnishi Y; Horinouchi S
    Appl Environ Microbiol; 2003 May; 69(5):2699-706. PubMed ID: 12732539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologous production of flavanones in Escherichia coli: potential for combinatorial biosynthesis of flavonoids in bacteria.
    Kaneko M; Hwang EI; Ohnishi Y; Horinouchi S
    J Ind Microbiol Biotechnol; 2003 Aug; 30(8):456-61. PubMed ID: 12759810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae.
    Park SR; Yoon JA; Paik JH; Park JW; Jung WS; Ban YH; Kim EJ; Yoo YJ; Han AR; Yoon YJ
    J Biotechnol; 2009 May; 141(3-4):181-8. PubMed ID: 19433224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells.
    Katsuyama Y; Miyahisa I; Funa N; Horinouchi S
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1143-9. PubMed ID: 16960736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli.
    Katsuyama Y; Funa N; Miyahisa I; Horinouchi S
    Chem Biol; 2007 Jun; 14(6):613-21. PubMed ID: 17584609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of pinocembrin from glucose using engineered escherichia coli.
    Kim BG; Lee H; Ahn JH
    J Microbiol Biotechnol; 2014 Nov; 24(11):1536-41. PubMed ID: 25085569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering.
    Guo L; Chen X; Li LN; Tang W; Pan YT; Kong JQ
    Microb Cell Fact; 2016 Feb; 15():27. PubMed ID: 26846670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine.
    Li J; Tian C; Xia Y; Mutanda I; Wang K; Wang Y
    Metab Eng; 2019 Mar; 52():124-133. PubMed ID: 30496827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of 5-deoxyflavanones in microorganisms.
    Yan Y; Huang L; Koffas MA
    Biotechnol J; 2007 Oct; 2(10):1250-62. PubMed ID: 17806100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae.
    Jiang H; Wood KV; Morgan JA
    Appl Environ Microbiol; 2005 Jun; 71(6):2962-9. PubMed ID: 15932991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis.
    Cao W; Ma W; Zhang B; Wang X; Chen K; Li Y; Ouyang P
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):557-66. PubMed ID: 26733394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli.
    Zhu S; Wu J; Du G; Zhou J; Chen J
    Appl Environ Microbiol; 2014 May; 80(10):3072-80. PubMed ID: 24610848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli.
    Wu J; Zhou T; Du G; Zhou J; Chen J
    PLoS One; 2014; 9(7):e101492. PubMed ID: 24988485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli.
    Watts KT; Lee PC; Schmidt-Dannert C
    Chembiochem; 2004 Apr; 5(4):500-7. PubMed ID: 15185374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Assembly of a Biofactory for (2
    Parra Daza LE; Suarez Medina L; Tafur Rangel AE; Fernández-Niño M; Mejía-Manzano LA; González-Valdez J; Reyes LH; González Barrios AF
    Biomolecules; 2023 Mar; 13(3):. PubMed ID: 36979500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy.
    Wu J; Du G; Zhou J; Chen J
    Metab Eng; 2013 Mar; 16():48-55. PubMed ID: 23246524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli.
    Leonard E; Chemler J; Lim KH; Koffas MA
    Appl Microbiol Biotechnol; 2006 Mar; 70(1):85-91. PubMed ID: 16025328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli.
    Choi O; Wu CZ; Kang SY; Ahn JS; Uhm TB; Hong YS
    J Ind Microbiol Biotechnol; 2011 Oct; 38(10):1657-65. PubMed ID: 21424580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.