BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 15770480)

  • 21. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy.
    Wu J; Zhang X; Zhou J; Dong M
    Bioresour Technol; 2016 Oct; 218():999-1007. PubMed ID: 27450982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production.
    Fowler ZL; Gikandi WW; Koffas MA
    Appl Environ Microbiol; 2009 Sep; 75(18):5831-9. PubMed ID: 19633125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis and biotechnological production of flavanones: current state and perspectives.
    Fowler ZL; Koffas MA
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):799-808. PubMed ID: 19475406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosynthesis of enantiopure (S)-3-hydroxybutyric acid in metabolically engineered Escherichia coli.
    Lee SH; Park SJ; Lee SY; Hong SH
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):633-41. PubMed ID: 18461320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.
    Cao W; Ma W; Wang X; Zhang B; Cao X; Chen K; Li Y; Ouyang P
    Sci Rep; 2016 Sep; 6():32640. PubMed ID: 27586788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of eriodictyol from tyrosine by Corynebacterium glutamicum.
    Wu X; Liu J; Liu D; Yuwen M; Koffas MAG; Zha J
    Microb Cell Fact; 2022 May; 21(1):86. PubMed ID: 35568867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones.
    Kallscheuer N; Vogt M; Stenzel A; Gätgens J; Bott M; Marienhagen J
    Metab Eng; 2016 Nov; 38():47-55. PubMed ID: 27288926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of a heterologous pathway for the production of flavonoids from glucose.
    Santos CN; Koffas M; Stephanopoulos G
    Metab Eng; 2011 Jul; 13(4):392-400. PubMed ID: 21320631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combinatorial biosynthesis of plant medicinal polyketides by microorganisms.
    Horinouchi S
    Curr Opin Chem Biol; 2009 Apr; 13(2):197-204. PubMed ID: 19264534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of Chalcone Synthase Activity and High-Efficiency Fermentative Production of (2
    Tong Y; Li N; Zhou S; Zhang L; Xu S; Zhou J
    ACS Synth Biol; 2024 May; 13(5):1454-1466. PubMed ID: 38662928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli.
    Wu J; Du G; Chen J; Zhou J
    Sci Rep; 2015 Sep; 5():13477. PubMed ID: 26323217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits.
    Ogo Y; Ozawa K; Ishimaru T; Murayama T; Takaiwa F
    Plant Biotechnol J; 2013 Aug; 11(6):734-46. PubMed ID: 23551455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial production of O-methylated flavanones from methylated phenylpropanoic acids in engineered Escherichia coli.
    Cui H; Song MC; Lee JY; Yoon YJ
    J Ind Microbiol Biotechnol; 2019 Dec; 46(12):1707-1713. PubMed ID: 31595455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains.
    Rathnasingh C; Raj SM; Lee Y; Catherine C; Ashok S; Park S
    J Biotechnol; 2012 Feb; 157(4):633-40. PubMed ID: 21723339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae.
    Jiang H; Wood KV; Morgan JA
    Appl Environ Microbiol; 2005 Jun; 71(6):2962-9. PubMed ID: 15932991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli.
    Wu J; Yu O; Du G; Zhou J; Chen J
    Appl Environ Microbiol; 2014 Dec; 80(23):7283-92. PubMed ID: 25239896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering of anthocyanin biosynthesis in Escherichia coli.
    Yan Y; Chemler J; Huang L; Martens S; Koffas MA
    Appl Environ Microbiol; 2005 Jul; 71(7):3617-23. PubMed ID: 16000769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combinatorial biosynthesis of non-bacterial and unnatural flavonoids, stilbenoids and curcuminoids by microorganisms.
    Horinouchi S
    J Antibiot (Tokyo); 2008 Dec; 61(12):709-28. PubMed ID: 19194030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precursor-directed biosynthesis of stilbene methyl ethers in Escherichia coli.
    Katsuyama Y; Funa N; Horinouchi S
    Biotechnol J; 2007 Oct; 2(10):1286-93. PubMed ID: 17806099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli.
    Tokuyama K; Toya Y; Matsuda F; Cress BF; Koffas MAG; Shimizu H
    Metab Eng; 2019 Mar; 52():215-223. PubMed ID: 30529031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.