These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 15770981)
1. Estimation of the orientation term of the general quadrature transform from a single n-dimensional fringe pattern. Quiroga JA; Servin M; Marroquin JL; Crespo D J Opt Soc Am A Opt Image Sci Vis; 2005 Mar; 22(3):439-44. PubMed ID: 15770981 [TBL] [Abstract][Full Text] [Related]
2. Fast algorithm for estimation of the orientation term of a general quadrature transform with application to demodulation of an n-dimensional fringe pattern. Crespo D; Quiroga JA; Gomez-Pedrero JA Appl Opt; 2004 Nov; 43(33):6139-46. PubMed ID: 15605553 [TBL] [Abstract][Full Text] [Related]
3. General n-dimensional quadrature transform and its application to interferogram demodulation. Servin M; Quiroga JA; Marroquin JL J Opt Soc Am A Opt Image Sci Vis; 2003 May; 20(5):925-34. PubMed ID: 12747439 [TBL] [Abstract][Full Text] [Related]
4. Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. Larkin KG; Bone DJ; Oldfield MA J Opt Soc Am A Opt Image Sci Vis; 2001 Aug; 18(8):1862-70. PubMed ID: 11488490 [TBL] [Abstract][Full Text] [Related]
5. Regularized quadrature and phase tracking from a single closed-fringe interferogram. Servin M; Marroquin JL; Quiroga JA J Opt Soc Am A Opt Image Sci Vis; 2004 Mar; 21(3):411-9. PubMed ID: 15005406 [TBL] [Abstract][Full Text] [Related]
6. Phase recovery from a single fringe pattern using an orientational vector-field-regularized estimator. Villa J; De la Rosa I; Miramontes G; Quiroga JA J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2766-73. PubMed ID: 16396038 [TBL] [Abstract][Full Text] [Related]
7. Local demodulation of holograms using the Riesz transform with application to microscopy. Seelamantula CS; Pavillon N; Depeursinge C; Unser M J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2118-29. PubMed ID: 23201659 [TBL] [Abstract][Full Text] [Related]
8. Modulo 2pi fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm. Quiroga JA; Servin M; Cuevas F J Opt Soc Am A Opt Image Sci Vis; 2002 Aug; 19(8):1524-31. PubMed ID: 12152692 [TBL] [Abstract][Full Text] [Related]
9. Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform. Larkin KG J Opt Soc Am A Opt Image Sci Vis; 2001 Aug; 18(8):1871-81. PubMed ID: 11488491 [TBL] [Abstract][Full Text] [Related]
10. Uniform estimation of orientation using local and nonlocal 2-D energy operators. Larkin K Opt Express; 2005 Oct; 13(20):8097-121. PubMed ID: 19498840 [TBL] [Abstract][Full Text] [Related]
11. Spatial carrier fringe pattern phase demodulation by use of a two-dimensional real wavelet. Li S; Su X; Chen W Appl Opt; 2009 Dec; 48(36):6893-906. PubMed ID: 20029590 [TBL] [Abstract][Full Text] [Related]
12. Two-shot fringe pattern phase-amplitude demodulation using Gram-Schmidt orthonormalization with Hilbert-Huang pre-filtering. Trusiak M; Patorski K Opt Express; 2015 Feb; 23(4):4672-90. PubMed ID: 25836505 [TBL] [Abstract][Full Text] [Related]
13. Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform. Gdeisat MA; Burton DR; Lalor MJ Appl Opt; 2006 Dec; 45(34):8722-32. PubMed ID: 17119568 [TBL] [Abstract][Full Text] [Related]
14. DeepOrientation: convolutional neural network for fringe pattern orientation map estimation. Cywińska M; Rogalski M; Brzeski F; Patorski K; Trusiak M Opt Express; 2022 Nov; 30(23):42283-42299. PubMed ID: 36366685 [TBL] [Abstract][Full Text] [Related]
15. Single shot fringe pattern phase demodulation using Hilbert-Huang transform aided by the principal component analysis. Trusiak M; Służewski Ł; Patorski K Opt Express; 2016 Feb; 24(4):4221-38. PubMed ID: 26907070 [TBL] [Abstract][Full Text] [Related]
16. Quality-guided orientation unwrapping for fringe direction estimation. Wang H; Kemao Q Appl Opt; 2012 Feb; 51(4):413-21. PubMed ID: 22307110 [TBL] [Abstract][Full Text] [Related]
17. A self-calibrating phase-shifting algorithm based on the natural demodulation of two-dimensional fringe patterns. Larkin K Opt Express; 2001 Aug; 9(5):236-53. PubMed ID: 19421294 [TBL] [Abstract][Full Text] [Related]
18. Fringe pattern demodulation with a two-dimensional digital phase-locked loop algorithm. Gdeisat MA; Burton DR; Lalor MJ Appl Opt; 2002 Sep; 41(26):5479-87. PubMed ID: 12224770 [TBL] [Abstract][Full Text] [Related]
19. Local adaptable quadrature filters to demodulate single fringe patterns with closed fringes. Estrada JC; Servin M; Marroquín JL Opt Express; 2007 Mar; 15(5):2288-98. PubMed ID: 19532463 [TBL] [Abstract][Full Text] [Related]
20. Regularized quadratic cost function for oriented fringe-pattern filtering. Villa J; Quiroga JA; De la Rosa I Opt Lett; 2009 Jun; 34(11):1741-3. PubMed ID: 19488167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]