These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 15770983)
1. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms. Pei SC; Ding JJ J Opt Soc Am A Opt Image Sci Vis; 2005 Mar; 22(3):460-74. PubMed ID: 15770983 [TBL] [Abstract][Full Text] [Related]
2. Fractional finite Fourier transform. Khare K; George N J Opt Soc Am A Opt Image Sci Vis; 2004 Jul; 21(7):1179-85. PubMed ID: 15260249 [TBL] [Abstract][Full Text] [Related]
3. Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms. Pei SC; Ding JJ J Opt Soc Am A Opt Image Sci Vis; 2003 Mar; 20(3):522-32. PubMed ID: 12630838 [TBL] [Abstract][Full Text] [Related]
4. Fast numerical algorithm for the linear canonical transform. Hennelly BM; Sheridan JT J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):928-37. PubMed ID: 15898553 [TBL] [Abstract][Full Text] [Related]
5. Computation of scattering of a plane wave from multiple prolate spheroids using the collocation multipole method. Lee WM; Chen JT J Acoust Soc Am; 2016 Oct; 140(4):2235. PubMed ID: 27794351 [TBL] [Abstract][Full Text] [Related]
6. Optical implementations of two-dimensional fractional fourier transforms and linear canonical transforms with arbitrary parameters. Sahin A; Ozaktas HM; Mendlovic D Appl Opt; 1998 Apr; 37(11):2130-41. PubMed ID: 18273135 [TBL] [Abstract][Full Text] [Related]
8. Discrete normalized Bargmann transform through the gyrator transform. Uriostegui K J Opt Soc Am A Opt Image Sci Vis; 2020 Jun; 37(6):951-958. PubMed ID: 32543595 [TBL] [Abstract][Full Text] [Related]
9. Uncertainty principles in linear canonical transform domains and some of their implications in optics. Stern A J Opt Soc Am A Opt Image Sci Vis; 2008 Mar; 25(3):647-52. PubMed ID: 18311233 [TBL] [Abstract][Full Text] [Related]
10. Sound Field Reconstruction Using Prolate Spheroidal Wave Functions and Sparse Regularization. Zhang X; Lou J; Zhu S; Lu J; Li R Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837142 [TBL] [Abstract][Full Text] [Related]
11. Reflective prolate-spheroidal operators and the KP/KdV equations. Casper WR; Grünbaum FA; Yakimov M; Zurrián I Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18310-18315. PubMed ID: 31455736 [TBL] [Abstract][Full Text] [Related]
12. Fast numerical calculation of the offset linear canonical transform. Chen JY; Li BZ J Opt Soc Am A Opt Image Sci Vis; 2023 Mar; 40(3):427-442. PubMed ID: 37133009 [TBL] [Abstract][Full Text] [Related]
13. On the fractional Fourier and continuous fractional wave packet transforms of almost periodic functions. Uzun BÜ J Inequal Appl; 2017; 2017(1):126. PubMed ID: 28680229 [TBL] [Abstract][Full Text] [Related]
14. Eigenfunctions and self-imaging phenomena of the two-dimensional nonseparable linear canonical transform. Ding JJ; Pei SC J Opt Soc Am A Opt Image Sci Vis; 2011 Feb; 28(2):82-95. PubMed ID: 21293514 [TBL] [Abstract][Full Text] [Related]
15. Efficient realization of on-demand functional ultrasonic fields based on prolate spheroidal wave functions from sampling theorem. Shen YX; Zhu XF J Acoust Soc Am; 2022 Jan; 151(1):96. PubMed ID: 35105000 [TBL] [Abstract][Full Text] [Related]
16. Discrete Quadratic-Phase Fourier Transform: Theory and Convolution Structures. Srivastava HM; Lone WZ; Shah FA; Zayed AI Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420360 [TBL] [Abstract][Full Text] [Related]
17. Implementation of quantum and classical discrete fractional Fourier transforms. Weimann S; Perez-Leija A; Lebugle M; Keil R; Tichy M; Gräfe M; Heilmann R; Nolte S; Moya-Cessa H; Weihs G; Christodoulides DN; Szameit A Nat Commun; 2016 Mar; 7():11027. PubMed ID: 27006089 [TBL] [Abstract][Full Text] [Related]
18. Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. Jackson JI; Meyer CH; Nishimura DG; Macovski A IEEE Trans Med Imaging; 1991; 10(3):473-8. PubMed ID: 18222850 [TBL] [Abstract][Full Text] [Related]
19. Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product. Oktem FS; Ozaktas HM J Opt Soc Am A Opt Image Sci Vis; 2010 Aug; 27(8):1885-95. PubMed ID: 20686595 [TBL] [Abstract][Full Text] [Related]