BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 15771413)

  • 1. Synthesis and pharmacological evaluation of huprine-tacrine heterodimers: subnanomolar dual binding site acetylcholinesterase inhibitors.
    Camps P; Formosa X; Muñoz-Torrero D; Petrignet J; Badia A; Clos MV
    J Med Chem; 2005 Mar; 48(6):1701-4. PubMed ID: 15771413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer's and prion diseases.
    Galdeano C; Viayna E; Sola I; Formosa X; Camps P; Badia A; Clos MV; Relat J; Ratia M; Bartolini M; Mancini F; Andrisano V; Salmona M; Minguillón C; González-Muñoz GC; Rodríguez-Franco MI; Bidon-Chanal A; Luque FJ; Muñoz-Torrero D
    J Med Chem; 2012 Jan; 55(2):661-9. PubMed ID: 22185619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New huprine derivatives functionalized at position 9 as highly potent acetylcholinesterase inhibitors.
    Ronco C; Foucault R; Gillon E; Bohn P; Nachon F; Jean L; Renard PY
    ChemMedChem; 2011 May; 6(5):876-88. PubMed ID: 21344648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation.
    Camps P; Formosa X; Galdeano C; Gómez T; Muñoz-Torrero D; Scarpellini M; Viayna E; Badia A; Clos MV; Camins A; Pallàs M; Bartolini M; Mancini F; Andrisano V; Estelrich J; Lizondo M; Bidon-Chanal A; Luque FJ
    J Med Chem; 2008 Jun; 51(12):3588-98. PubMed ID: 18517184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of the anticholinesterase activity of two new tacrine-huperzine A hybrids.
    Alcalá Mdel M; Vivas NM; Hospital S; Camps P; Muñoz-Torrero D; Badia A
    Neuropharmacology; 2003 May; 44(6):749-55. PubMed ID: 12681373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel heterobivalent tacrine derivatives as cholinesterase inhibitors with notable selectivity toward butyrylcholinesterase.
    Elsinghorst PW; Tanarro CM; Gütschow M
    J Med Chem; 2006 Dec; 49(25):7540-4. PubMed ID: 17149883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 A resolution: kinetic and molecular dynamic correlates.
    Dvir H; Wong DM; Harel M; Barril X; Orozco M; Luque FJ; Muñoz-Torrero D; Camps P; Rosenberry TL; Silman I; Sussman JL
    Biochemistry; 2002 Mar; 41(9):2970-81. PubMed ID: 11863435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing Polarity in Tacrine and Huprine Derivatives: Potent Anticholinesterase Agents for the Treatment of Myasthenia Gravis.
    Galdeano C; Coquelle N; Cieslikiewicz-Bouet M; Bartolini M; Pérez B; Clos MV; Silman I; Jean L; Colletier JP; Renard PY; Muñoz-Torrero D
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29534488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homobivalent quinazolinimines as novel nanomolar inhibitors of cholinesterases with dirigible selectivity toward butyrylcholinesterase.
    Decker M
    J Med Chem; 2006 Sep; 49(18):5411-3. PubMed ID: 16942014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structure-based design approach to the development of novel, reversible AChE inhibitors.
    Doucet-Personeni C; Bentley PD; Fletcher RJ; Kinkaid A; Kryger G; Pirard B; Taylor A; Taylor R; Taylor J; Viner R; Silman I; Sussman JL; Greenblatt HM; Lewis T
    J Med Chem; 2001 Sep; 44(20):3203-15. PubMed ID: 11563919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Huprine X is a novel high-affinity inhibitor of acetylcholinesterase that is of interest for treatment of Alzheimer's disease.
    Camps P; Cusack B; Mallender WD; El Achab RE; Morral J; Muñoz-Torrero D; Rosenberry TL
    Mol Pharmacol; 2000 Feb; 57(2):409-17. PubMed ID: 10648652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of 2-Methoxyhuprine as Novel Lead for Alzheimer's Disease Therapy.
    Mezeiova E; Korabecny J; Sepsova V; Hrabinova M; Jost P; Muckova L; Kucera T; Dolezal R; Misik J; Spilovska K; Pham NL; Pokrievkova L; Roh J; Jun D; Soukup O; Kaping D; Kuca K
    Molecules; 2017 Jul; 22(8):. PubMed ID: 28788095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer's disease.
    Muñoz-Ruiz P; Rubio L; García-Palomero E; Dorronsoro I; del Monte-Millán M; Valenzuela R; Usán P; de Austria C; Bartolini M; Andrisano V; Bidon-Chanal A; Orozco M; Luque FJ; Medina M; Martínez A
    J Med Chem; 2005 Nov; 48(23):7223-33. PubMed ID: 16279781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors.
    Savini L; Gaeta A; Fattorusso C; Catalanotti B; Campiani G; Chiasserini L; Pellerano C; Novellino E; McKissic D; Saxena A
    J Med Chem; 2003 Jan; 46(1):1-4. PubMed ID: 12502352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and biological evaluation of tacrine-thiadiazolidinone hybrids as dual acetylcholinesterase inhibitors.
    Dorronsoro I; Alonso D; Castro A; del Monte M; García-Palomero E; Martínez A
    Arch Pharm (Weinheim); 2005 Jan; 338(1):18-23. PubMed ID: 15674800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of 13-amidohuprines to acetylcholinesterase: exploring the ligand-induced conformational change of the gly117-gly118 peptide bond in the oxyanion hole.
    Camps P; Gómez E; Muñoz-Torrero D; Badia A; Clos MV; Curutchet C; Muñoz-Muriedas J; Luque FJ
    J Med Chem; 2006 Nov; 49(23):6833-40. PubMed ID: 17154513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of tacrine analogues and their structure-activity relationships.
    Proctor GR; Harvey AL
    Curr Med Chem; 2000 Mar; 7(3):295-302. PubMed ID: 10637366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of huperzine A-tacrine hybrids as potent inhibitors of human cholinesterases targeting their midgorge recognition sites.
    Gemma S; Gabellieri E; Huleatt P; Fattorusso C; Borriello M; Catalanotti B; Butini S; De Angelis M; Novellino E; Nacci V; Belinskaya T; Saxena A; Campiani G
    J Med Chem; 2006 Jun; 49(11):3421-5. PubMed ID: 16722663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NO-donating tacrine derivatives as potential butyrylcholinesterase inhibitors with vasorelaxation activity.
    Chen Y; Sun J; Huang Z; Liao H; Peng S; Lehmann J; Zhang Y
    Bioorg Med Chem Lett; 2013 Jun; 23(11):3162-5. PubMed ID: 23639542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-target-directed drug design strategy: from a dual binding site acetylcholinesterase inhibitor to a trifunctional compound against Alzheimer's disease.
    Bolognesi ML; Cavalli A; Valgimigli L; Bartolini M; Rosini M; Andrisano V; Recanatini M; Melchiorre C
    J Med Chem; 2007 Dec; 50(26):6446-9. PubMed ID: 18047264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.