BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 15771504)

  • 1. Unusual heme-histidine bond in the active site of a chaperone.
    Lee D; Pervushin K; Bischof D; Braun M; Thöny-Meyer L
    J Am Chem Soc; 2005 Mar; 127(11):3716-7. PubMed ID: 15771504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and mutational characterization of the heme chaperone CcmE reveals a heme binding site.
    Enggist E; Schneider MJ; Schulz H; Thöny-Meyer L
    J Bacteriol; 2003 Jan; 185(1):175-83. PubMed ID: 12486054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic ligation properties of the Escherichia coli heme chaperone CcmE to non-covalently bound heme.
    Stevens JM; Uchida T; Daltrop O; Kitagawa T; Ferguson SJ
    J Biol Chem; 2006 Mar; 281(10):6144-51. PubMed ID: 16373344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prototype of a heme chaperone essential for cytochrome c maturation.
    Schulz H; Hennecke H; Thöny-Meyer L
    Science; 1998 Aug; 281(5380):1197-200. PubMed ID: 9712585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C-terminal flexible domain of the heme chaperone CcmE is important but not essential for its function.
    Enggist E; Thöny-Meyer L
    J Bacteriol; 2003 Jul; 185(13):3821-7. PubMed ID: 12813076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.
    Vu BC; Nothnagel HJ; Vuletich DA; Falzone CJ; Lecomte JT
    Biochemistry; 2004 Oct; 43(39):12622-33. PubMed ID: 15449952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of Bacillus pasteurii UreE, a metal-binding chaperone for the assembly of the urease active site.
    Ciurli S; Safarov N; Miletti S; Dikiy A; Christensen SK; Kornetzky K; Bryant DA; Vandenberghe I; Devreese B; Samyn B; Remaut H; van Beeumen J
    J Biol Inorg Chem; 2002 Jun; 7(6):623-31. PubMed ID: 12072968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a novel bond between a histidine and the essential tyrosine in catalase HPII of Escherichia coli.
    Bravo J; Fita I; Ferrer JC; Ens W; Hillar A; Switala J; Loewen PC
    Protein Sci; 1997 May; 6(5):1016-23. PubMed ID: 9144772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of Methylophilus methylotrophus cytochrome c": insights into the structural basis of haem-ligand detachment.
    Brennan L; Turner DL; Fareleira P; Santos H
    J Mol Biol; 2001 Apr; 308(2):353-65. PubMed ID: 11327772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction of covalently bound heme with the cytochrome c maturation protein CcmE.
    Uchida T; Stevens JM; Daltrop O; Harvat EM; Hong L; Ferguson SJ; Kitagawa T
    J Biol Chem; 2004 Dec; 279(50):51981-8. PubMed ID: 15465823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR structure of the heme chaperone CcmE reveals a novel functional motif.
    Enggist E; Thöny-Meyer L; Güntert P; Pervushin K
    Structure; 2002 Nov; 10(11):1551-7. PubMed ID: 12429096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CcmE protein of the c-type cytochrome biogenesis system: unusual in vitro heme incorporation into apo-CcmE and transfer from holo-CcmE to apocytochrome.
    Daltrop O; Stevens JM; Higham CW; Ferguson SJ
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9703-8. PubMed ID: 12119398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origins of aging mass loss in recombinant N-terminus and C-terminus deletion mutants of the heme-PAS biosensor domain BjFixLH(140-270).
    Satterlee JD
    J Inorg Biochem; 2011 May; 105(5):609-15. PubMed ID: 21443850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass instability in isolated recombinant FixL heme domains of Bradyrhizobium japonicum.
    Satterlee JD; Suquet C; Bidwai AK; Erman JE; Schwall L; Jimenez R
    Biochemistry; 2008 Feb; 47(6):1540-53. PubMed ID: 18201102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the heme-binding site of the cytochrome c maturation protein CcmE.
    Harvat EM; Redfield C; Stevens JM; Ferguson SJ
    Biochemistry; 2009 Mar; 48(8):1820-8. PubMed ID: 19178152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of heme with variants of the heme chaperone CcmE carrying active site mutations and a cleavable N-terminal His tag.
    Stevens JM; Daltrop O; Higham CW; Ferguson SJ
    J Biol Chem; 2003 Jun; 278(23):20500-6. PubMed ID: 12657624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the hydrophobic amino acid residues required for heme assembly in the rhizobial oxygen sensor protein FixL.
    Nakamura H; Saito K; Ito E; Tamura K; Tsuchiya T; Nishigaki K; Shiro Y; Iizuka T
    Biochem Biophys Res Commun; 1998 Jun; 247(2):427-31. PubMed ID: 9642144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and spectroscopic characterization of the covalent binding of heme to cytochrome b6.
    de Vitry C; Desbois A; Redeker V; Zito F; Wollman FA
    Biochemistry; 2004 Apr; 43(13):3956-68. PubMed ID: 15049703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the role of iron-histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins.
    Herzik MA; Jonnalagadda R; Kuriyan J; Marletta MA
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):E4156-64. PubMed ID: 25253889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of the heme distal residues of FixL in O2 sensing: a single convergent structure of the heme moiety is relevant to the downregulation of kinase activity.
    Tanaka A; Nakamura H; Shiro Y; Fujii H
    Biochemistry; 2006 Feb; 45(8):2515-23. PubMed ID: 16489744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.