These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15771530)

  • 1. Parallel biomolecular computation on surfaces with advanced finite automata.
    Soreni M; Yogev S; Kossoy E; Shoham Y; Keinan E
    J Am Chem Soc; 2005 Mar; 127(11):3935-43. PubMed ID: 15771530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential dependence on DNA ligase of type II restriction enzymes: a practical way toward ligase-free DNA automaton.
    Chen P; Li J; Zhao J; He L; Zhang Z
    Biochem Biophys Res Commun; 2007 Feb; 353(3):733-7. PubMed ID: 17196173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A programmable biomolecular computing machine with bacterial phenotype output.
    Kossoy E; Lavid N; Soreni-Harari M; Shoham Y; Keinan E
    Chembiochem; 2007 Jul; 8(11):1255-60. PubMed ID: 17562552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular computing with plant cell phenotype serving as quality controlled output.
    Shoshani S; Wolf S; Keinan E
    Mol Biosyst; 2011 Apr; 7(4):1113-20. PubMed ID: 21234494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable and autonomous computing machine made of biomolecules.
    Benenson Y; Paz-Elizur T; Adar R; Keinan E; Livneh Z; Shapiro E
    Nature; 2001 Nov; 414(6862):430-4. PubMed ID: 11719800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA molecule provides a computing machine with both data and fuel.
    Benenson Y; Adar R; Paz-Elizur T; Livneh Z; Shapiro E
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2191-6. PubMed ID: 12601148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A detailed experimental study of a DNA computer with two endonucleases.
    Sakowski S; KrasiƄski T; Sarnik J; Blasiak J; Waldmajer J; Poplawski T
    Z Naturforsch C J Biosci; 2017 Jul; 72(7-8):303-313. PubMed ID: 28432850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An autonomous DNA model for finite state automata.
    Martinez-Perez IM; Zimmermann KH; Ignatova Z
    Int J Bioinform Res Appl; 2009; 5(1):81-96. PubMed ID: 19136366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP.
    Cho EJ; Yang L; Levy M; Ellington AD
    J Am Chem Soc; 2005 Feb; 127(7):2022-3. PubMed ID: 15713061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A splicing model-based DNA-computing approach on microfluidic chip.
    Xie H; Li B; Qin J; Huang Z; Zhu Y; Lin B
    Electrophoresis; 2009 Oct; 30(20):3514-8. PubMed ID: 19798677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomolecular computers with multiple restriction enzymes.
    Sakowski S; Krasinski T; Waldmajer J; Sarnik J; Blasiak J; Poplawski T
    Genet Mol Biol; 2017; 40(4):860-870. PubMed ID: 29064510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic manipulations of DNA oligonucleotides on microgel: towards development of DNA-microgel bioassays.
    Ali MM; Su S; Filipe CD; Pelton R; Li Y
    Chem Commun (Camb); 2007 Nov; (43):4459-61. PubMed ID: 17971955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The restriction endonuclease R.NmeDI from Neisseria meningitidis that recognizes a palindromic sequence and cuts the DNA on both sides of the recognition sequence.
    Kwiatek A; Piekarowicz A
    Nucleic Acids Res; 2007; 35(19):6539-46. PubMed ID: 17897964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of base-specific contacts in protein-DNA complexes by photocrosslinking and mass spectrometry: a case study using the restriction endonuclease SsoII.
    Pingoud V; Geyer H; Geyer R; Kubareva E; Bujnicki JM; Pingoud A
    Mol Biosyst; 2005 Jul; 1(2):135-41. PubMed ID: 16880975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Design of mixed polymers based on DNA fragments with consensus promotor elements, separated by nonnucleotide segments].
    Koroleva ON; Volkov EM; Drutsa VL
    Bioorg Khim; 1994 Apr; 20(4):420-32. PubMed ID: 8003046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time observation of DNA looping dynamics of Type IIE restriction enzymes NaeI and NarI.
    van den Broek B; Vanzi F; Normanno D; Pavone FS; Wuite GJ
    Nucleic Acids Res; 2006; 34(1):167-74. PubMed ID: 16407332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR studies of restriction enzyme-DNA interactions: role of conformation in sequence specificity.
    Dupureur CM
    Biochemistry; 2005 Apr; 44(13):5065-74. PubMed ID: 15794644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel DNA ligase with broad nucleotide cofactor specificity from the hyperthermophilic crenarchaeon Sulfophobococcus zilligii: influence of ancestral DNA ligase on cofactor utilization.
    Sun Y; Seo MS; Kim JH; Kim YJ; Kim GA; Lee JI; Lee JH; Kwon ST
    Environ Microbiol; 2008 Dec; 10(12):3212-24. PubMed ID: 18647334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical model of restriction endonuclease HpaI in complex with DNA, predicted by fold recognition and validated by site-directed mutagenesis.
    Skowronek KJ; Kosinski J; Bujnicki JM
    Proteins; 2006 Jun; 63(4):1059-68. PubMed ID: 16498623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-base excess adaptor ligation method for walking uncloned genomic DNA.
    Tonooka Y; Mizukami Y; Fujishima M
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):173-80. PubMed ID: 18071644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.