These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 15771709)
1. Down-regulation of astroglial proteins in the rat cerebellum after portacaval anastomosis. Suárez I; Bodega G; Rubio M; Fernández B Neuropathol Appl Neurobiol; 2005 Apr; 31(2):163-9. PubMed ID: 15771709 [TBL] [Abstract][Full Text] [Related]
2. Region-selective glutamine synthetase expression in the rat central nervous system following portocaval anastomosis. Suárez I; Bodega G; Arilla E; Fernández B Neuropathol Appl Neurobiol; 1997 Jun; 23(3):254-61. PubMed ID: 9223135 [TBL] [Abstract][Full Text] [Related]
3. Different response of astrocytes and Bergmann glial cells to portacaval shunt: an immunohistochemical study in the rat cerebellum. Suárez I; Bodega G; Arilla E; Rubio M; Villalba R; Fernández B Glia; 1992; 6(3):172-9. PubMed ID: 1282500 [TBL] [Abstract][Full Text] [Related]
4. Upregulation of alpha-synuclein expression in the rat cerebellum in experimental hepatic encephalopathy. Suárez I; Bodega G; Fernández B Neuropathol Appl Neurobiol; 2010 Aug; 36(5):422-35. PubMed ID: 20345648 [TBL] [Abstract][Full Text] [Related]
5. Neuronal and inducible nitric oxide synthase expression in the rat cerebellum following portacaval anastomosis. Suárez I; Bodega G; Rubio M; Felipo V; Fernández B Brain Res; 2005 Jun; 1047(2):205-13. PubMed ID: 15904901 [TBL] [Abstract][Full Text] [Related]
6. Reduced glial fibrillary acidic protein and glutamine synthetase expression in astrocytes and Bergmann glial cells in the rat cerebellum caused by delta(9)-tetrahydrocannabinol administration during development. Suárez I; Bodega G; Fernández-Ruiz JJ; Ramos JA; Rubio M; Fernández B Dev Neurosci; 2002; 24(4):300-12. PubMed ID: 12457068 [TBL] [Abstract][Full Text] [Related]
7. Glial fibrillary acidic protein messenger RNA and glutamine synthetase activity after nervous system injury. Condorelli DF; Dell'Albani P; Kaczmarek L; Messina L; Spampinato G; Avola R; Messina A; Giuffrida Stella AM J Neurosci Res; 1990 Jun; 26(2):251-7. PubMed ID: 1973199 [TBL] [Abstract][Full Text] [Related]
8. Heterogeneous astroglial response in the rat spinal cord to long-term portacaval shunt: an immunohistochemical study. Bodega G; Suárez I; Arilla E; Rubio M; Fernández B Glia; 1991; 4(4):400-7. PubMed ID: 1834560 [TBL] [Abstract][Full Text] [Related]
9. Lipopolysaccharides (LPS), up-regulate the IL-1-mRNA and down-regulate the glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS)-mRNAs in astroglial primary cultures. Letournel-Boulland ML; Fages C; Rolland B; Tardy M Eur Cytokine Netw; 1994; 5(1):51-6. PubMed ID: 7914097 [TBL] [Abstract][Full Text] [Related]
10. Long-term changes in glial fibrillary acidic protein and glutamine synthetase immunoreactivities in the supraoptic nucleus of portacaval shunted rats. Suárez I; Bodega G; Arilla E; Fernández B Metab Brain Dis; 1996 Dec; 11(4):369-79. PubMed ID: 8979255 [TBL] [Abstract][Full Text] [Related]
11. Evolutionary changes of astroglia in Elasmobranchii comparing to amniotes: a study based on three immunohistochemical markers (GFAP, S-100, and glutamine synthetase). Ari C; Kálmán M Brain Behav Evol; 2008; 71(4):305-24. PubMed ID: 18446022 [TBL] [Abstract][Full Text] [Related]
12. Glutamine synthetase becomes nitrated and its activity is reduced during repetitive seizure activity in the pentylentetrazole model of epilepsy. Bidmon HJ; Görg B; Palomero-Gallagher N; Schleicher A; Häussinger D; Speckmann EJ; Zilles K Epilepsia; 2008 Oct; 49(10):1733-48. PubMed ID: 18479397 [TBL] [Abstract][Full Text] [Related]
13. Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS. Coleman E; Judd R; Hoe L; Dennis J; Posner P Glia; 2004 Nov; 48(2):166-78. PubMed ID: 15378652 [TBL] [Abstract][Full Text] [Related]
14. Possible implication of ciliary neurotrophic factor (CNTF) and beta-synuclein in the ammonia effect on cultured rat astroglial cells: a study using DNA and protein microarrays. Bodega G; Suárez I; López-Fernández LA; Almonacid L; Zaballos A; Fernández B Neurochem Int; 2006 Jun; 48(8):729-38. PubMed ID: 16483693 [TBL] [Abstract][Full Text] [Related]
15. Apparent scarcity of glial fibrillary acidic protein expression in the brain of the pygmy shrew Sorex minutus as revealed by immunocytochemistry. Olkowicz S; Bartkowska K; Rychlik L; Turlejski K Neurosci Lett; 2004 Sep; 368(2):205-10. PubMed ID: 15351450 [TBL] [Abstract][Full Text] [Related]
16. Astroglial reactivity in natural scrapie of sheep. Lefrançois T; Fages C; Brugère-Picoux J; Tardy M Microb Pathog; 1994 Nov; 17(5):283-9. PubMed ID: 7723656 [TBL] [Abstract][Full Text] [Related]
17. Astroglial structures in the zebrafish brain. Grupp L; Wolburg H; Mack AF J Comp Neurol; 2010 Nov; 518(21):4277-87. PubMed ID: 20853506 [TBL] [Abstract][Full Text] [Related]
18. Changes in pigment epithelium-derived factor expression following kainic acid induced cerebellar lesion in rat. Sanagi T; Yabe T; Yamada H Neurosci Lett; 2007 Aug; 424(1):66-71. PubMed ID: 17709187 [TBL] [Abstract][Full Text] [Related]
19. Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Toro CT; Hallak JE; Dunham JS; Deakin JF Neurosci Lett; 2006 Sep; 404(3):276-81. PubMed ID: 16842914 [TBL] [Abstract][Full Text] [Related]
20. Glutamine synthetase in brain: effect of ammonia. Suárez I; Bodega G; Fernández B Neurochem Int; 2002; 41(2-3):123-42. PubMed ID: 12020613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]