BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 15772240)

  • 1. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels.
    Jiang SA; Campusano JM; Su H; O'Dowd DK
    J Neurophysiol; 2005 Jul; 94(1):491-500. PubMed ID: 15772240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. nAChR-mediated calcium responses and plasticity in Drosophila Kenyon cells.
    Campusano JM; Su H; Jiang SA; Sicaeros B; O'Dowd DK
    Dev Neurobiol; 2007 Sep; 67(11):1520-32. PubMed ID: 17525989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postsynaptic IP3 receptor-mediated Ca2+ release modulates synaptic transmission in hippocampal neurons.
    Kelly PT; Mackinnon RL; Dietz RV; Maher BJ; Wang J
    Brain Res Mol Brain Res; 2005 Apr; 135(1-2):232-48. PubMed ID: 15857686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast synaptic currents in Drosophila mushroom body Kenyon cells are mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors and picrotoxin-sensitive GABA receptors.
    Su H; O'Dowd DK
    J Neurosci; 2003 Oct; 23(27):9246-53. PubMed ID: 14534259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-lasting spontaneous calcium transients in the striatal cells.
    Osanai M; Yamada N; Yagi T
    Neurosci Lett; 2006 Jul; 402(1-2):81-5. PubMed ID: 16714081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic muscarinic receptors enhance glutamate release at the mitral/tufted to granule cell dendrodendritic synapse in the rat main olfactory bulb.
    Ghatpande AS; Gelperin A
    J Neurophysiol; 2009 Apr; 101(4):2052-61. PubMed ID: 19225175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta-Amyloid peptide25-35 depresses excitatory synaptic transmission in the rat basolateral amygdala "in vitro".
    Ashenafi S; Fuente A; Criado JM; Riolobos AS; Heredia M; Yajeya J
    Neurobiol Aging; 2005 Apr; 26(4):419-28. PubMed ID: 15653170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABA modulates Drosophila circadian clock neurons via GABAB receptors and decreases in calcium.
    Hamasaka Y; Wegener C; Nässel DR
    J Neurobiol; 2005 Dec; 65(3):225-40. PubMed ID: 16118795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous oscillatory activity of starburst amacrine cells in the mouse retina.
    Petit-Jacques J; Völgyi B; Rudy B; Bloomfield S
    J Neurophysiol; 2005 Sep; 94(3):1770-80. PubMed ID: 15917322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAB receptors in the medial septum/diagonal band slice from 16-25 day rat.
    Henderson Z; Jones GA
    Neuroscience; 2005; 132(3):789-800. PubMed ID: 15837139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulatory action of acetylcholine on the Na+-dependent action potentials in Kenyon cells isolated from the mushroom body of the cricket brain.
    Terazima E; Yoshino M
    J Insect Physiol; 2010 Dec; 56(12):1746-54. PubMed ID: 20637212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of synaptic input to hypothalamic presympathetic neurons by GABA(B) receptors.
    Chen Q; Pan HL
    Neuroscience; 2006 Oct; 142(2):595-606. PubMed ID: 16887273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit.
    Murphy GJ; Darcy DP; Isaacson JS
    Nat Neurosci; 2005 Mar; 8(3):354-64. PubMed ID: 15696160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolongation and enhancement of gamma-aminobutyric acid receptor mediated excitation by chronic treatment with estradiol in developing rat hippocampal neurons.
    Nuñez JL; Bambrick LL; Krueger BK; McCarthy MM
    Eur J Neurosci; 2005 Jun; 21(12):3251-61. PubMed ID: 16026463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-stimulated adenylyl cyclases required for long-term potentiation in the anterior cingulate cortex.
    Liauw J; Wu LJ; Zhuo M
    J Neurophysiol; 2005 Jul; 94(1):878-82. PubMed ID: 15985698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct mechanisms of presynaptic inhibition at GABAergic synapses of the rat substantia nigra pars compacta.
    Giustizieri M; Bernardi G; Mercuri NB; Berretta N
    J Neurophysiol; 2005 Sep; 94(3):1992-2003. PubMed ID: 15944237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irreversible loss of a subpopulation of cortical interneurons in the absence of glutamatergic network activity.
    de Lima AD; Opitz T; Voigt T
    Eur J Neurosci; 2004 Jun; 19(11):2931-43. PubMed ID: 15182300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Octopamine and Dopamine differentially modulate the nicotine-induced calcium response in Drosophila Mushroom Body Kenyon Cells.
    Leyton V; Goles NI; Fuenzalida-Uribe N; Campusano JM
    Neurosci Lett; 2014 Feb; 560():16-20. PubMed ID: 24334164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of N-methyl-D-aspartate glutamate receptor antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice: characterization by optical, field potential and patch clamp recordings.
    Sugai T; Onoda N
    Neuroscience; 2005; 135(2):583-94. PubMed ID: 16112479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic sodium spikelets and low-threshold calcium spikes in turtle olfactory bulb granule cells.
    Pinato G; Midtgaard J
    J Neurophysiol; 2005 Mar; 93(3):1285-94. PubMed ID: 15483062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.