BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 15772303)

  • 1. The protein tyrosine kinase-dependent pathway mediates the effect of K intake on renal K secretion.
    Lin DH; Sterling H; Wang WH
    Physiology (Bethesda); 2005 Apr; 20():140-6. PubMed ID: 15772303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of ROMK channels by protein tyrosine kinase and tyrosine phosphatase.
    Wang WH; Lin DH; Sterling H
    Trends Cardiovasc Med; 2002 Apr; 12(3):138-42. PubMed ID: 12007740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal potassium channels: recent developments.
    Wang W
    Curr Opin Nephrol Hypertens; 2004 Sep; 13(5):549-55. PubMed ID: 15300162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of renal K transport by dietary K intake.
    Wang W
    Annu Rev Physiol; 2004; 66():547-69. PubMed ID: 14977413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct.
    Lin DH; Sterling H; Yang B; Hebert SC; Giebisch G; Wang WH
    Am J Physiol Renal Physiol; 2004 May; 286(5):F881-92. PubMed ID: 15075184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of tetraspan protein CD63 activates protein-tyrosine kinase (PTK) and enhances the PTK-induced inhibition of ROMK channels.
    Lin D; Kamsteeg EJ; Zhang Y; Jin Y; Sterling H; Yue P; Roos M; Duffield A; Spencer J; Caplan M; Wang WH
    J Biol Chem; 2008 Mar; 283(12):7674-81. PubMed ID: 18211905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH.
    Fakler B; Schultz JH; Yang J; Schulte U; Brandle U; Zenner HP; Jan LY; Ruppersberg JP
    EMBO J; 1996 Aug; 15(16):4093-9. PubMed ID: 8861938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of the low conductance KATP channel, ROMK.
    Hebert SC; Wang WH
    Wien Klin Wochenschr; 1997 Jun; 109(12-13):471-6. PubMed ID: 9261988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K depletion increases protein tyrosine kinase-mediated phosphorylation of ROMK.
    Lin DH; Sterling H; Lerea KM; Welling P; Jin L; Giebisch G; Wang WH
    Am J Physiol Renal Physiol; 2002 Oct; 283(4):F671-7. PubMed ID: 12217858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitogen-activated protein kinases inhibit the ROMK (Kir 1.1)-like small conductance K channels in the cortical collecting duct.
    Babilonia E; Li D; Wang Z; Sun P; Lin DH; Jin Y; Wang WH
    J Am Soc Nephrol; 2006 Oct; 17(10):2687-96. PubMed ID: 16971657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects.
    Wang WH
    Am J Physiol Renal Physiol; 2006 Jan; 290(1):F14-9. PubMed ID: 16339961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct.
    Chu PY; Quigley R; Babich V; Huang CL
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1179-87. PubMed ID: 12952855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitor of growth 4 (ING4) is up-regulated by a low K intake and suppresses renal outer medullary K channels (ROMK) by MAPK stimulation.
    Zhang X; Lin DH; Jin Y; Wang KS; Zhang Y; Babilonia E; Wang Z; Wang Z; Giebisch G; Han ZG; Wang WH
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9517-22. PubMed ID: 17517644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hydrogen peroxide on ROMK channels in the cortical collecting duct.
    Wei Y; Wang Z; Babilonia E; Sterling H; Sun P; Wang W
    Am J Physiol Renal Physiol; 2007 Apr; 292(4):F1151-6. PubMed ID: 17164397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dietary K intake on apical small-conductance K channel in CCD: role of protein tyrosine kinase.
    Wei Y; Bloom P; Lin D; Gu R; Wang WH
    Am J Physiol Renal Physiol; 2001 Aug; 281(2):F206-12. PubMed ID: 11457712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide anions are involved in mediating the effect of low K intake on c-Src expression and renal K secretion in the cortical collecting duct.
    Babilonia E; Wei Y; Sterling H; Kaminski P; Wolin M; Wang WH
    J Biol Chem; 2005 Mar; 280(11):10790-6. PubMed ID: 15644319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels.
    Yue P; Sun P; Lin DH; Pan C; Xing W; Wang W
    Kidney Int; 2011 Feb; 79(4):423-31. PubMed ID: 20927043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decrease in dietary K intake stimulates the generation of superoxide anions in the kidney and inhibits K secretory channels in the CCD.
    Wang ZJ; Sun P; Xing W; Pan C; Lin DH; Wang WH
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1515-22. PubMed ID: 20357031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of the ROMK potassium channel to the apical membrane of distal nephron in rat kidney.
    Kohda Y; Ding W; Phan E; Housini I; Wang J; Star RA; Huang CL
    Kidney Int; 1998 Oct; 54(4):1214-23. PubMed ID: 9767537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. POSH stimulates the ubiquitination and the clathrin-independent endocytosis of ROMK1 channels.
    Lin DH; Yue P; Pan CY; Sun P; Zhang X; Han Z; Roos M; Caplan M; Giebisch G; Wang WH
    J Biol Chem; 2009 Oct; 284(43):29614-24. PubMed ID: 19710010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.