These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15772749)

  • 21. Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis.
    Castellani F; van Rossum BJ; Diehl A; Rehbein K; Oschkinat H
    Biochemistry; 2003 Oct; 42(39):11476-83. PubMed ID: 14516199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods.
    Nakazawa Y; Asakura T
    J Am Chem Soc; 2003 Jun; 125(24):7230-7. PubMed ID: 12797796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TROSY experiment for refinement of backbone psi and phi by simultaneous measurements of cross-correlated relaxation rates and 3,4J(H alpha HN) coupling constants.
    Vögeli B; Pervushin K
    J Biomol NMR; 2002 Dec; 24(4):291-300. PubMed ID: 12522294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional 13C shift/1H-15N coupling/15N shift solid-state NMR correlation spectroscopy.
    Gu Z; Opella SJ
    J Magn Reson; 1999 Jun; 138(2):193-8. PubMed ID: 10341122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Empirical isotropic chemical shift surfaces.
    Czinki E; Császár AG
    J Biomol NMR; 2007 Aug; 38(4):269-87. PubMed ID: 17593527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solid-state NMR and quantum chemical investigations of 13Calpha shielding tensor magnitudes and orientations in peptides: determining phi and psi torsion angles.
    Wi S; Sun H; Oldfield E; Hong M
    J Am Chem Soc; 2005 May; 127(17):6451-8. PubMed ID: 15853353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Backbone conformational constraints in a microcrystalline U-15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy.
    Franks WT; Wylie BJ; Stellfox SA; Rienstra CM
    J Am Chem Soc; 2006 Mar; 128(10):3154-5. PubMed ID: 16522090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-resolution solid-state NMR studies on uniformly [13C,15N]-labeled ubiquitin.
    Seidel K; Etzkorn M; Heise H; Becker S; Baldus M
    Chembiochem; 2005 Sep; 6(9):1638-47. PubMed ID: 16094694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved measurement of (3)J(H(alpha)(i),N(i+1)) coupling constants in H(2)O dissolved proteins.
    Löhr F; Schmidt JM; Maurer S; Rüterjans H
    J Magn Reson; 2001 Nov; 153(1):75-82. PubMed ID: 11700083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein backbone dynamics through 13C'-13Calpha cross-relaxation in NMR spectroscopy.
    Ferrage F; Pelupessy P; Cowburn D; Bodenhausen G
    J Am Chem Soc; 2006 Aug; 128(34):11072-8. PubMed ID: 16925424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maximum entropy reconstruction of joint phi, psi-distribution with a coil-library prior: the backbone conformation of the peptide hormone motilin in aqueous solution from phi and psi-dependent J-couplings.
    Massad T; Jarvet J; Tanner R; Tomson K; Smirnova J; Palumaa P; Sugai M; Kohno T; Vanatalu K; Damberg P
    J Biomol NMR; 2007 Jun; 38(2):107-23. PubMed ID: 17458509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation.
    Chang SL; Tjandra N
    J Magn Reson; 2005 May; 174(1):43-53. PubMed ID: 15809171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microsecond protein dynamics measured by 13Calpha rotating-frame spin relaxation.
    Lundström P; Akke M
    Chembiochem; 2005 Sep; 6(9):1685-92. PubMed ID: 16028301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous alpha/beta spin-state selection for (13)C and (15)N from a time-shared HSQC-IPAP experiment.
    Nolis P; Parella T
    J Biomol NMR; 2007 Jan; 37(1):65-77. PubMed ID: 17160627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tryptophan chemical shift in peptides and proteins: a solid state carbon-13 nuclear magnetic resonance spectroscopic and quantum chemical investigation.
    Sun H; Oldfield E
    J Am Chem Soc; 2004 Apr; 126(14):4726-34. PubMed ID: 15070392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy.
    Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP
    J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril.
    Jaroniec CP; MacPhee CE; Astrof NS; Dobson CM; Griffin RG
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16748-53. PubMed ID: 12481032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental and theoretical investigation of the 13C and 15N chemical shift tensors in melanostatin-exploring the chemical shift tensor as a structural probe.
    Strohmeier M; Grant DM
    J Am Chem Soc; 2004 Jan; 126(3):966-77. PubMed ID: 14733574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site.
    Feng W; Tejero R; Zimmerman DE; Inouye M; Montelione GT
    Biochemistry; 1998 Aug; 37(31):10881-96. PubMed ID: 9692981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isotropic chemical shifts in magic-angle spinning NMR spectra of proteins.
    Wylie BJ; Sperling LJ; Rienstra CM
    Phys Chem Chem Phys; 2008 Jan; 10(3):405-13. PubMed ID: 18174982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.