BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15773087)

  • 1. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.
    Xu Y; Wang C; Tam KC; Li L
    Langmuir; 2004 Feb; 20(3):646-52. PubMed ID: 15773087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable gelation of methylcellulose by a salt mixture.
    Xu Y; Li L; Zheng P; Lam YC; Hu X
    Langmuir; 2004 Jul; 20(15):6134-8. PubMed ID: 15248695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase behavior of concentrated hydroxypropyl methylcellulose solution in the presence of mono and divalent salt.
    Almeida N; Rakesh L; Zhao J
    Carbohydr Polym; 2014 Jan; 99():630-7. PubMed ID: 24274553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical properties of methylcellulose and dodecyltrimethylammonium bromide in aqueous medium.
    Villetti MA; Bica CI; Garcia IT; Pereira FV; Ziembowicz FI; Kloster CL; Giacomelli C
    J Phys Chem B; 2011 May; 115(19):5868-76. PubMed ID: 21517042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-DSC and rheological studies of interactions between methylcellulose and surfactants.
    Li L; Liu E; Lim CH
    J Phys Chem B; 2007 Jun; 111(23):6410-6. PubMed ID: 17516676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels.
    Joshi SC; Liang CM; Lam YC
    J Biomater Sci Polym Ed; 2008; 19(12):1611-23. PubMed ID: 19017474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.
    Kometani N; Tanabe M; Su L; Yang K; Nishinari K
    J Phys Chem B; 2015 Jun; 119(22):6878-83. PubMed ID: 25984597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).
    Jin N; Zhang H; Jin S; Dadmun MD; Zhao B
    J Phys Chem B; 2012 Mar; 116(10):3125-37. PubMed ID: 22352399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A thermoreversible double gel: characterization of a methylcellulose and kappa-carrageenan mixed system in water by SAXS, DSC and rheology.
    Tomsic M; Prossnigg F; Glatter O
    J Colloid Interface Sci; 2008 Jun; 322(1):41-50. PubMed ID: 18417143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ observation of heat- and pressure-induced gelation of methylcellulose by fluorescence measurement.
    Su L; Wang Z; Yang K; Minamikawa Y; Kometani N; Nishinari K
    Int J Biol Macromol; 2014 Mar; 64():409-14. PubMed ID: 24361668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheological properties of reversible thermo-setting in situ gelling solutions with the methylcellulose-polyethylene glycol-citric acid ternary system (2): Effects of various water-soluble polymers and salts on the gelling temperature.
    Shimokawa K; Saegusa K; Ishii F
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):56-8. PubMed ID: 19615868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel.
    Bain MK; Bhowmick B; Maity D; Mondal D; Mollick MM; Rana D; Chattopadhyay D
    Int J Biol Macromol; 2012 Dec; 51(5):831-6. PubMed ID: 22884434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microphase Separation and Gelation of Methylcellulose in the Presence of Gallic Acid and NaCl as an In Situ Gel-Forming Drug Delivery System.
    Sangfai T; Tantishaiyakul V; Hirun N; Li L
    AAPS PharmSciTech; 2017 Apr; 18(3):605-616. PubMed ID: 27170164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of salts on gelation and drug release profiles of methylcellulose-based ophthalmic thermo-reversible in situ gels.
    Bhowmik M; Bain MK; Ghosh LK; Chattopadhyay D
    Pharm Dev Technol; 2011 Aug; 16(4):385-91. PubMed ID: 20429816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Solubility and phase transitions in the water-protein-salt system].
    Rozhkov SP
    Biofizika; 2006; 51(5):822-6. PubMed ID: 17131819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions.
    Miyawaki O; Omote C; Matsuhira K
    Biopolymers; 2015 Dec; 103(12):685-91. PubMed ID: 26215282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between gelation and phase separation in aqueous solutions of methylcellulose and hydroxypropylmethylcellulose.
    Fairclough JP; Yu H; Kelly O; Ryan AJ; Sammler RL; Radler M
    Langmuir; 2012 Jul; 28(28):10551-7. PubMed ID: 22694273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel.
    Park CH; Jeong L; Cho D; Kwon OH; Park WH
    Carbohydr Polym; 2013 Oct; 98(1):1179-85. PubMed ID: 23987461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkali cold gelation of whey proteins. Part I: sol-gel-sol(-gel) transitions.
    Mercadé-Prieto R; Gunasekaran S
    Langmuir; 2009 May; 25(10):5785-92. PubMed ID: 19432494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of mono- and dicationic ionic liquids on the viscosity and thermogelation of methylcellulose in the semi-diluted regime.
    Isa Ziembowicz F; de Freitas DV; Bender CR; Dos Santos Salbego PR; Piccinin Frizzo C; Pinto Martins MA; Reichert JM; Santos Garcia IT; Kloster CL; Villetti MA
    Carbohydr Polym; 2019 Jun; 214():174-185. PubMed ID: 30925987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.