BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 157741)

  • 1. The effect of amphiphilic phenylalkyl derivatives on platelet energy metabolism. Stimulation of glycolysis through activation of membrane ATPase.
    Patscheke H; Brossmer R
    Arzneimittelforschung; 1978; 28(9):1546-50. PubMed ID: 157741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy production and utilization by human platelets in the presence of some guanidines and phenols (uremic toxins) that inhibit aggregation.
    Carroll HJ
    Thromb Diath Haemorrh; 1975 Sep; 34(1):63-71. PubMed ID: 1188836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of calcium, thrombin and nucleotides (ADP, cAMP, cGMP) on blood platelet glycolysis and energy metabolism].
    Nikulin AA
    Farmakol Toksikol; 1980; 43(5):585-90. PubMed ID: 6256208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of metabolic inhibitors on ATP level and ATP-ase activity in blood platelets.
    Vopatová M; Mircevová L
    Acta Univ Carol Med Monogr; 1972; 53():119-25. PubMed ID: 4275437
    [No Abstract]   [Full Text] [Related]  

  • 5. Peroxynitrite can affect platelet responses by inhibiting energy production.
    Rusak T; Tomasiak M; Ciborowski M
    Acta Biochim Pol; 2006; 53(4):769-76. PubMed ID: 17068635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide and platelet energy metabolism.
    Tomasiak M; Stelmach H; Rusak T; Wysocka J
    Acta Biochim Pol; 2004; 51(3):789-803. PubMed ID: 15448739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of curare and methohexital-Na on the content of energy-rich phosphates and substrates of glycolysis in rat liver (author's transl)].
    Schütz A; Meyer G
    Arzneimittelforschung; 1982; 32(5):522-5. PubMed ID: 7201830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired energy metabolism in platelets from patients with Wiskott-Aldrich syndrome.
    Verhoeven AJ; van Oostrum IE; van Haarlem H; Akkerman JW
    Thromb Haemost; 1989 Feb; 61(1):10-4. PubMed ID: 2749583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia alters the energy metabolism and aggregation of washed human platelets.
    Akahori M; Uedono Y; Yamagami K; Takeyama N; Kitazawa Y; Tanaka T
    Haematologia (Budap); 1995; 26(4):191-8. PubMed ID: 7590513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of lead on the metabolic and energetic status of the Yabby, Cherax destructor, during environmental hypoxia.
    Morris S; van Aardt WJ; Ahern MD
    Aquat Toxicol; 2005 Oct; 75(1):16-31. PubMed ID: 16083977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of halothane on metabolic ATP and induced aggregation of human blood platelets.
    Hofmann JG; Seidel U; Till U
    Biomed Biochim Acta; 1989; 48(4):337-41. PubMed ID: 2751639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Craviten effect on the metabolism of stored platelets.
    Kotelba-Witkowska B; Stachecki B; Chmiel J; Malanowicz W; Olszewska K
    Pol J Pharmacol Pharm; 1982; 34(5-6):347-56. PubMed ID: 7187049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mathematical model for energy metabolism in erythrocytes. Independence of scaled glycolytic characteristics of individual features of the donors].
    Ataullakhanov FI; Buravtsev VN; Vitvitskiĭ VM; Dibrov BF; Zhabotinskiĭ AM
    Biokhimiia; 1980 Jul; 45(7):1267-73. PubMed ID: 6452178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone.
    Russell R; Jordan R; McMacken R
    Biochemistry; 1998 Jan; 37(2):596-607. PubMed ID: 9425082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships of adenine nucleotide metabolism to platelet-collagen adhesion.
    Morin RJ; Chen AF
    Thromb Haemost; 1978 Apr; 39(2):366-78. PubMed ID: 580988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of ADP-induced aggregation of human platelets by beta, gamma-methylene-ATP.
    Evans PM
    Cytobios; 1978; 23(90):101-8. PubMed ID: 158489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization.
    Ataullakhanov FI; Vitvitsky VM; Zhabotinsky AM; Pichugin AV; Kholodenko BN; Ehrlich LI
    Acta Biol Med Ger; 1981; 40(7-8):991-7. PubMed ID: 7331640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the glycolytic pathway by methylglyoxal in human platelets.
    Leoncini G; Maresca M; Buzzi E
    Cell Biochem Funct; 1989 Jan; 7(1):65-70. PubMed ID: 2752537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on human platelet glycolysis. Effect of glucose, cyanide, insulin, citrate, and agglutination and contraction on platelet glycolysis.
    Karpatkin S
    J Clin Invest; 1967 Mar; 46(3):409-17. PubMed ID: 6023775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.