These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 15774720)
1. 3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition. Yuan JF; Beniac DR; Chaconas G; Ottensmeyer FP Genes Dev; 2005 Apr; 19(7):840-52. PubMed ID: 15774720 [TBL] [Abstract][Full Text] [Related]
2. Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB. Mizuuchi M; Mizuuchi K EMBO J; 2001 Dec; 20(23):6927-35. PubMed ID: 11726528 [TBL] [Abstract][Full Text] [Related]
3. Interactions of phage Mu enhancer and termini that specify the assembly of a topologically unique interwrapped transpososome. Yin Z; Suzuki A; Lou Z; Jayaram M; Harshey RM J Mol Biol; 2007 Sep; 372(2):382-96. PubMed ID: 17669422 [TBL] [Abstract][Full Text] [Related]
4. Functional comparison of the transposition core machineries of phage Mu and Haemophilus influenzae Mu-like prophage Hin-Mu reveals interchangeable components. Saariaho AH; Lamberg A; Elo S; Savilahti H Virology; 2005 Jan; 331(1):6-19. PubMed ID: 15582649 [TBL] [Abstract][Full Text] [Related]
5. Tn10 transposase mutants with altered transpososome unfolding properties are defective in hairpin formation. Humayun S; Wardle SJ; Shilton BH; Pribil PA; Liburd J; Haniford DB J Mol Biol; 2005 Feb; 346(3):703-16. PubMed ID: 15713457 [TBL] [Abstract][Full Text] [Related]
6. Effect of mutations in the Mu-host junction region on transpososome assembly. Coros CJ; Chaconas G J Mol Biol; 2001 Jul; 310(2):299-309. PubMed ID: 11428891 [TBL] [Abstract][Full Text] [Related]
7. The transpososome: control of transposition at the level of catalysis. Gueguen E; Rousseau P; Duval-Valentin G; Chandler M Trends Microbiol; 2005 Nov; 13(11):543-9. PubMed ID: 16181782 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of MuA transposase-catalyzed processing of model transposon end DNA hairpin substrates. Saariaho AH; Savilahti H Nucleic Acids Res; 2006; 34(10):3139-49. PubMed ID: 16757579 [TBL] [Abstract][Full Text] [Related]
9. Mutations in domain III alpha of the Mu transposase: evidence suggesting an active site component which interacts with the Mu-host junction. Naigamwalla DZ; Coros CJ; Wu Z; Chaconas G J Mol Biol; 1998 Sep; 282(2):265-74. PubMed ID: 9735286 [TBL] [Abstract][Full Text] [Related]
10. [Transposition as a way of existence: phage Mu]. Mit'kina LN Genetika; 2003 May; 39(5):637-56. PubMed ID: 12838611 [TBL] [Abstract][Full Text] [Related]
11. The Mu transposase tetramer is inactive in unassisted strand transfer: an auto-allosteric effect of Mu A promotes the reaction in the absence of Mu B. Wu Z; Chaconas G J Mol Biol; 1997 Mar; 267(1):132-41. PubMed ID: 9096212 [TBL] [Abstract][Full Text] [Related]
12. Visualizing Mu transposition: assembling the puzzle pieces. Rice PA Genes Dev; 2005 Apr; 19(7):773-5. PubMed ID: 15805467 [No Abstract] [Full Text] [Related]
13. A unique right end-enhancer complex precedes synapsis of Mu ends: the enhancer is sequestered within the transpososome throughout transposition. Pathania S; Jayaram M; Harshey RM EMBO J; 2003 Jul; 22(14):3725-36. PubMed ID: 12853487 [TBL] [Abstract][Full Text] [Related]
14. Formation, characterization and partial purification of a Tn5 strand transfer complex. Whitfield CR; Wardle SJ; Haniford DB J Mol Biol; 2006 Dec; 364(3):290-301. PubMed ID: 17014865 [TBL] [Abstract][Full Text] [Related]
15. Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer. Leung PC; Teplow DB; Harshey RM Nature; 1989 Apr; 338(6217):656-8. PubMed ID: 2539564 [TBL] [Abstract][Full Text] [Related]
16. Target DNA bending by the Mu transpososome promotes careful transposition and prevents its reversal. Fuller JR; Rice PA Elife; 2017 Feb; 6():. PubMed ID: 28177285 [TBL] [Abstract][Full Text] [Related]
17. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds. Mizuuchi M; Baker TA; Mizuuchi K Cell; 1995 Nov; 83(3):375-85. PubMed ID: 8521467 [TBL] [Abstract][Full Text] [Related]
18. The μ transpososome structure sheds light on DDE recombinase evolution. Montaño SP; Pigli YZ; Rice PA Nature; 2012 Nov; 491(7424):413-7. PubMed ID: 23135398 [TBL] [Abstract][Full Text] [Related]
19. Studies on a "jumping gene machine": higher-order nucleoprotein complexes in Mu DNA transposition. Chaconas G Biochem Cell Biol; 1999; 77(6):487-91. PubMed ID: 10668626 [TBL] [Abstract][Full Text] [Related]
20. A subsequence-specific DNA-binding domain resides in the 13 kDa amino terminus of the bacteriophage Mu transposase protein. Tolias PP; DuBow MS J Mol Recognit; 1989 Apr; 1(4):172-8. PubMed ID: 2561072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]