These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 15774888)

  • 61. The cyclic peptide labaditin does not alter the outer membrane integrity of Salmonella enterica serovar Typhimurium.
    Barbosa SC; Nobre TM; Volpati D; Cilli EM; Correa DS; Oliveira ON
    Sci Rep; 2019 Feb; 9(1):1993. PubMed ID: 30760803
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interplay between MgtC and PagC in Salmonella enterica serovar Typhimurium.
    Alix E; Miki T; Felix C; Rang C; Figueroa-Bossi N; Demettre E; Blanc-Potard AB
    Microb Pathog; 2008 Sep; 45(3):236-40. PubMed ID: 18620040
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The impact of lipid A modification on biofilm and related pathophysiological phenotypes, endotoxicity, immunogenicity, and protection of Salmonella Typhimurium.
    Hewawaduge C; Senevirathne A; Sivasankar C; Lee JH
    Vet Microbiol; 2023 Jul; 282():109759. PubMed ID: 37104940
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Expression of the lipopolysaccharide-modifying enzymes PagP and PagL modulates the endotoxic activity of Bordetella pertussis.
    Geurtsen J; Steeghs L; Hamstra HJ; Ten Hove J; de Haan A; Kuipers B; Tommassen J; van der Ley P
    Infect Immun; 2006 Oct; 74(10):5574-85. PubMed ID: 16988232
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Identification of 16S RNA and PagL genes of Ralstonia solanacearum].
    Hrytsaĭ RV; Antipov IO; Varbanets' LD
    Mikrobiol Z; 2013; 75(2):32-6. PubMed ID: 23720961
    [TBL] [Abstract][Full Text] [Related]  

  • 66. mig-14 is a Salmonella gene that plays a role in bacterial resistance to antimicrobial peptides.
    Brodsky IE; Ernst RK; Miller SI; Falkow S
    J Bacteriol; 2002 Jun; 184(12):3203-13. PubMed ID: 12029036
    [TBL] [Abstract][Full Text] [Related]  

  • 67. PmrD is required for modifications to escherichia coli endotoxin that promote antimicrobial resistance.
    Rubin EJ; Herrera CM; Crofts AA; Trent MS
    Antimicrob Agents Chemother; 2015 Apr; 59(4):2051-61. PubMed ID: 25605366
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Recognition of antimicrobial peptides by a bacterial sensor kinase.
    Bader MW; Sanowar S; Daley ME; Schneider AR; Cho U; Xu W; Klevit RE; Le Moual H; Miller SI
    Cell; 2005 Aug; 122(3):461-72. PubMed ID: 16096064
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Yersinia pestis is viable with endotoxin composed of only lipid A.
    Tan L; Darby C
    J Bacteriol; 2005 Sep; 187(18):6599-600. PubMed ID: 16159798
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation.
    Zhou Z; Ribeiro AA; Lin S; Cotter RJ; Miller SI; Raetz CR
    J Biol Chem; 2001 Nov; 276(46):43111-21. PubMed ID: 11535603
    [TBL] [Abstract][Full Text] [Related]  

  • 71. PhoPQ regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer membrane.
    Dalebroux ZD; Matamouros S; Whittington D; Bishop RE; Miller SI
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1963-8. PubMed ID: 24449881
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria.
    Bishop RE; Gibbons HS; Guina T; Trent MS; Miller SI; Raetz CR
    EMBO J; 2000 Oct; 19(19):5071-80. PubMed ID: 11013210
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structure and function of lipid A-modifying enzymes.
    Anandan A; Vrielink A
    Ann N Y Acad Sci; 2020 Jan; 1459(1):19-37. PubMed ID: 31553069
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Atomistic Scale Effects of Lipopolysaccharide Modifications on Bacterial Outer Membrane Defenses.
    Rice A; Wereszczynski J
    Biophys J; 2018 Mar; 114(6):1389-1399. PubMed ID: 29590596
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications.
    Chen HD; Groisman EA
    Annu Rev Microbiol; 2013; 67():83-112. PubMed ID: 23799815
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Conserved Tandem Arginines for PbgA/YejM Allow Salmonella Typhimurium To Regulate LpxC and Control Lipopolysaccharide Biogenesis during Infection.
    Giordano NP; Mettlach JA; Dalebroux ZD
    Infect Immun; 2022 Feb; 90(2):e0049021. PubMed ID: 34780276
    [TBL] [Abstract][Full Text] [Related]  

  • 77. BaeR overexpression enhances the susceptibility of acrB deleted Salmonella enterica serovar Typhimurium to polymyxin.
    Sun F; Qi C; Wei Q; Zhang L; Fu H; Jiang X; Lu F; Li L
    Vet Microbiol; 2022 Nov; 274():109552. PubMed ID: 36095878
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Salmonella Typhimurium PagP- and UgtL-dependent resistance to antimicrobial peptides contributes to the gut colonization.
    Goto R; Miki T; Nakamura N; Fujimoto M; Okada N
    PLoS One; 2017; 12(12):e0190095. PubMed ID: 29267354
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enzymatic deacylation of the lipid A moiety of Salmonella typhimurium lipopolysaccharides by human neutrophils.
    Hall CL; Munford RS
    Proc Natl Acad Sci U S A; 1983 Nov; 80(21):6671-5. PubMed ID: 6356132
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study.
    Helander IM; Kilpeläinen I; Vaara M
    Mol Microbiol; 1994 Feb; 11(3):481-7. PubMed ID: 8152372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.