BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 15776020)

  • 1. Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET.
    Charest PG; Terrillon S; Bouvier M
    EMBO Rep; 2005 Apr; 6(4):334-40. PubMed ID: 15776020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay.
    Hamdan FF; Audet M; Garneau P; Pelletier J; Bouvier M
    J Biomol Screen; 2005 Aug; 10(5):463-75. PubMed ID: 16093556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Arrestin-2 BRET Biosensors Detect Different β-Arrestin-2 Conformations in Interaction with GPCRs.
    Oishi A; Dam J; Jockers R
    ACS Sens; 2020 Jan; 5(1):57-64. PubMed ID: 31849219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins.
    Bedini A
    Methods Mol Biol; 2021; 2201():45-58. PubMed ID: 32975788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.
    Nuber S; Zabel U; Lorenz K; Nuber A; Milligan G; Tobin AB; Lohse MJ; Hoffmann C
    Nature; 2016 Mar; 531(7596):661-4. PubMed ID: 27007855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conformational signature of β-arrestin2 predicts its trafficking and signalling functions.
    Lee MH; Appleton KM; Strungs EG; Kwon JY; Morinelli TA; Peterson YK; Laporte SA; Luttrell LM
    Nature; 2016 Mar; 531(7596):665-8. PubMed ID: 27007854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors.
    Shukla AK; Violin JD; Whalen EJ; Gesty-Palmer D; Shenoy SK; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9988-93. PubMed ID: 18621717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer.
    Kroeger KM; Hanyaloglu AC; Seeber RM; Miles LE; Eidne KA
    J Biol Chem; 2001 Apr; 276(16):12736-43. PubMed ID: 11278883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved donor/acceptor BRET couples for monitoring beta-arrestin recruitment to G protein-coupled receptors.
    Kamal M; Marquez M; Vauthier V; Leloire A; Froguel P; Jockers R; Couturier C
    Biotechnol J; 2009 Sep; 4(9):1337-44. PubMed ID: 19557797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET).
    Angers S; Salahpour A; Joly E; Hilairet S; Chelsky D; Dennis M; Bouvier M
    Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3684-9. PubMed ID: 10725388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods to Monitor the Trafficking of β-Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET.
    Cao Y; Namkung Y; Laporte SA
    Methods Mol Biol; 2019; 1957():59-68. PubMed ID: 30919346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time analysis of agonist-induced activation of protease-activated receptor 1/Galphai1 protein complex measured by bioluminescence resonance energy transfer in living cells.
    Ayoub MA; Maurel D; Binet V; Fink M; Prézeau L; Ansanay H; Pin JP
    Mol Pharmacol; 2007 May; 71(5):1329-40. PubMed ID: 17267663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of GPCR-protein interactions by BRET.
    Kocan M; Pfleger KD
    Methods Mol Biol; 2011; 746():357-71. PubMed ID: 21607868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of GPCR/beta-arrestin interactions in live cells using bioluminescence resonance energy transfer technology.
    Kocan M; Pfleger KD
    Methods Mol Biol; 2009; 552():305-17. PubMed ID: 19513659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRS).
    Bertrand L; Parent S; Caron M; Legault M; Joly E; Angers S; Bouvier M; Brown M; Houle B; Ménard L
    J Recept Signal Transduct Res; 2002; 22(1-4):533-41. PubMed ID: 12503639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation.
    Barak LS; Ferguson SS; Zhang J; Caron MG
    J Biol Chem; 1997 Oct; 272(44):27497-500. PubMed ID: 9346876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosteric interactions within the AT₁ angiotensin receptor homodimer: role of the conserved DRY motif.
    Szalai B; Barkai L; Turu G; Szidonya L; Várnai P; Hunyady L
    Biochem Pharmacol; 2012 Aug; 84(4):477-85. PubMed ID: 22579851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing Arrestin Function Using Intramolecular FlAsH-BRET Biosensors.
    Strungs EG; Luttrell LM; Lee MH
    Methods Mol Biol; 2019; 1957():309-322. PubMed ID: 30919362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Conformational Profiling of GPCRs with CRISPR/Cas9 Gene Editing Approaches.
    Bourque K; Devost D; Inoue A; Hébert TE
    Methods Mol Biol; 2019; 1947():169-182. PubMed ID: 30969416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of ubiquitination in living cells by BRET.
    Perroy J; Pontier S; Charest PG; Aubry M; Bouvier M
    Nat Methods; 2004 Dec; 1(3):203-8. PubMed ID: 15782195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.