BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15776233)

  • 1. Palindrome content of the yeast Saccharomyces cerevisiae genome.
    Lisnić B; Svetec IK; Sarić H; Nikolić I; Zgaga Z
    Curr Genet; 2005 May; 47(5):289-97. PubMed ID: 15776233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-dependent antirecombinogenic effect of short spacers on palindrome recombinogenicity.
    Svetec Miklenić M; Gatalica N; Matanović A; Žunar B; Štafa A; Lisnić B; Svetec IK
    DNA Repair (Amst); 2020 Jun; 90():102848. PubMed ID: 32388488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes.
    Butler DK; Yasuda LE; Yao MC
    Cell; 1996 Dec; 87(6):1115-22. PubMed ID: 8978615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-dependent palindrome-induced intrachromosomal recombination in yeast.
    Lisnić B; Svetec IK; Stafa A; Zgaga Z
    DNA Repair (Amst); 2009 Mar; 8(3):383-9. PubMed ID: 19124276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of large palindromic DNA by homologous recombination of short inverted repeat sequences in Saccharomyces cerevisiae.
    Butler DK; Gillespie D; Steele B
    Genetics; 2002 Jul; 161(3):1065-75. PubMed ID: 12136011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for cloning and sequencing long palindromic DNA junctions.
    Rattray AJ
    Nucleic Acids Res; 2004 Nov; 32(19):e155. PubMed ID: 15534362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palindromes in DNA-A Risk for Genome Stability and Implications in Cancer.
    Svetec Miklenić M; Svetec IK
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unequal excision of complementary strands is involved in the generation of palindromic repetitions of rho- mitochondrial DNA in yeast.
    Sor F; Fukuhara H
    Cell; 1983 Feb; 32(2):391-6. PubMed ID: 6297793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cruciform in the direct repeats of the yeast 2 micron DNA: Selective S1 nuclease cleavage at one of the three homologous palindromes.
    Asakura Y; Kikuchi Y; Yanagida M
    J Biochem; 1985 Jul; 98(1):41-7. PubMed ID: 2995328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and distribution of inverted repeats (palindromes). II. Analysis of DNA of the mouse.
    Biezunski N
    Chromosoma; 1981; 84(1):111-29. PubMed ID: 7297247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long palindromes formed in Streptomyces by nonrecombinational intra-strand annealing.
    Qin Z; Cohen SN
    Genes Dev; 2000 Jul; 14(14):1789-96. PubMed ID: 10898793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanism of palindromic gene amplification in Saccharomyces cerevisiae.
    Rattray AJ; Shafer BK; Neelam B; Strathern JN
    Genes Dev; 2005 Jun; 19(11):1390-9. PubMed ID: 15937224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks.
    Narayanan V; Mieczkowski PA; Kim HM; Petes TD; Lobachev KS
    Cell; 2006 Jun; 125(7):1283-96. PubMed ID: 16814715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compositional bias is a major determinant of the distribution pattern and abundance of palindromes in Drosophila melanogaster.
    Liu G; Liu J; Zhang B
    J Mol Evol; 2012 Oct; 75(3-4):130-40. PubMed ID: 23138634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The human genome-wide distribution of DNA palindromes.
    Lu L; Jia H; Dröge P; Li J
    Funct Integr Genomics; 2007 Jul; 7(3):221-7. PubMed ID: 17340149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seven-base-pair inverted repeats in DNA form stable hairpins in vivo in Saccharomyces cerevisiae.
    Nag DK; Petes TD
    Genetics; 1991 Nov; 129(3):669-73. PubMed ID: 1752412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical analyses of counts and distributions of restriction sites in DNA sequences.
    Karlin S; Burge C; Campbell AM
    Nucleic Acids Res; 1992 Mar; 20(6):1363-70. PubMed ID: 1313968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large DNA palindromes as a common form of structural chromosome aberrations in human cancers.
    Tanaka H; Bergstrom DA; Yao MC; Tapscott SJ
    Hum Cell; 2006 Feb; 19(1):17-23. PubMed ID: 16643603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural selection on gene order in the genome reorganization process after whole-genome duplication of yeast.
    Sugino RP; Innan H
    Mol Biol Evol; 2012 Jan; 29(1):71-9. PubMed ID: 21546358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New approaches to the analysis of palindromic sequences from the human genome: evolution and polymorphism of an intronic site at the NF1 locus.
    Lewis SM; Chen S; Strathern JN; Rattray AJ
    Nucleic Acids Res; 2005 Dec; 33(22):e186. PubMed ID: 16340004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.