BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 15776811)

  • 21. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite Element Method (FEM) Modeling of Freeze-drying: Monitoring Pharmaceutical Product Robustness During Lyophilization.
    Chen X; Sadineni V; Maity M; Quan Y; Enterline M; Mantri RV
    AAPS PharmSciTech; 2015 Dec; 16(6):1317-26. PubMed ID: 25791415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measuring the specific surface area (SSA) of freeze-dried biologics using inverse gas chromatography.
    Duralliu A; Matejtschuk P; Williams DR
    Eur J Pharm Biopharm; 2019 Sep; 142():216-221. PubMed ID: 31233863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: Part I, product temperature measurement.
    Tang X; Nail SL; Pikal MJ
    AAPS PharmSciTech; 2006 Mar; 7(1):E95-E103. PubMed ID: 28290029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of collapse of amorphous-based lyophilized cake induced by slow ramp during the shelf ramp process.
    Ohori R; Akita T; Yamashita C
    Int J Pharm; 2019 Jun; 564():461-471. PubMed ID: 31015005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the use of a micro freeze-dryer for the investigation of the primary drying stage of a freeze-drying process.
    Fissore D; Gallo G; Ruggiero AE; Thompson TN
    Eur J Pharm Biopharm; 2019 Aug; 141():121-129. PubMed ID: 31125719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of manometric temperature measurement (MTM) and SMART freeze dryer technology for development of an optimized freeze-drying cycle.
    Gieseler H; Kramer T; Pikal MJ
    J Pharm Sci; 2007 Dec; 96(12):3402-18. PubMed ID: 17853427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of loading process on product collapse during large-scale lyophilization.
    Wallen AJ; Van Ocker SH; Sinacola JR; Phillips BR
    J Pharm Sci; 2009 Mar; 98(3):997-1004. PubMed ID: 18661543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of primary drying temperature on process efficiency and product performance of lyophilized Ertapenam sodium.
    Vohra ZA; Zode SS; Bansal AK
    Drug Dev Ind Pharm; 2019 Dec; 45(12):1940-1948. PubMed ID: 31625418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Excipients for Room Temperature Stable Freeze-Dried Monoclonal Antibody Formulations.
    Haeuser C; Goldbach P; Huwyler J; Friess W; Allmendinger A
    J Pharm Sci; 2020 Jan; 109(1):807-817. PubMed ID: 31622600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: part I, product temperature measurement.
    Tang X; Nail SL; Pikal MJ
    AAPS PharmSciTech; 2006 Feb; 7(1):E14. PubMed ID: 16584144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the sucrose/glycine/water system by differential scanning calorimetry and freeze-drying microscopy.
    Kasraian K; Spitznagel TM; Juneau JA; Yim K
    Pharm Dev Technol; 1998 May; 3(2):233-9. PubMed ID: 9653761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Freeze-Drying Above the Glass Transition Temperature in Amorphous Protein Formulations While Maintaining Product Quality and Improving Process Efficiency.
    Depaz RA; Pansare S; Patel SM
    J Pharm Sci; 2016 Jan; 105(1):40-9. PubMed ID: 26580140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of dryer load on freeze drying process design.
    Patel SM; Jameel F; Pikal MJ
    J Pharm Sci; 2010 Oct; 99(10):4363-79. PubMed ID: 20737639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A step forward towards the development of stable freeze-dried liposomes: a quality by design approach (QbD).
    Sylvester B; Porfire A; Achim M; Rus L; Tomuţă I
    Drug Dev Ind Pharm; 2018 Mar; 44(3):385-397. PubMed ID: 29098869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of murine monoclonal antibody to tumor necrosis factor (TNF-MAb) formulation for freeze-drying cycle development.
    Ma X; Wang DQ; Bouffard R; MacKenzie A
    Pharm Res; 2001 Feb; 18(2):196-202. PubMed ID: 11405291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Jul; 104(7):2345-58. PubMed ID: 25994980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of a soft sensor for the fast estimation of dried cake resistance during a freeze-drying cycle.
    Bosca S; Barresi AA; Fissore D
    Int J Pharm; 2013 Jul; 451(1-2):23-33. PubMed ID: 23624086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Headspace Moisture Mapping and the Information That Can Be Gained about Freeze-Dried Materials and Processes.
    Cook IA; Ward KR
    PDA J Pharm Sci Technol; 2011; 65(5):457-67. PubMed ID: 22293835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.
    Korang-Yeboah M; Srinivasan C; Siddiqui A; Awotwe-Otoo D; Cruz CN; Muhammad A
    AAPS PharmSciTech; 2018 Jan; 19(1):448-459. PubMed ID: 28785859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.