These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 1577686)

  • 1. Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity.
    Arnaud M; Vary P; Zagorec M; Klier A; Debarbouille M; Postma P; Rapoport G
    J Bacteriol; 1992 May; 174(10):3161-70. PubMed ID: 1577686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators.
    Debarbouille M; Arnaud M; Fouet A; Klier A; Rapoport G
    J Bacteriol; 1990 Jul; 172(7):3966-73. PubMed ID: 2163394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family.
    Aymerich S; Steinmetz M
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10410-4. PubMed ID: 1279678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro reconstitution of transcriptional antitermination by the SacT and SacY proteins of Bacillus subtilis.
    Arnaud M; Débarbouillé M; Rapoport G; Saier MH; Reizer J
    J Biol Chem; 1996 Aug; 271(31):18966-72. PubMed ID: 8702561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis.
    Krüger S; Hecker M
    J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog.
    Le Coq D; Lindner C; Krüger S; Steinmetz M; Stülke J
    J Bacteriol; 1995 Mar; 177(6):1527-35. PubMed ID: 7883710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the Bg1G family of transcriptional antiterminators.
    Alpert CA; Siebers U
    J Bacteriol; 1997 Mar; 179(5):1555-62. PubMed ID: 9045813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signalling system.
    Crutz AM; Steinmetz M
    J Bacteriol; 1992 Oct; 174(19):6087-95. PubMed ID: 1400159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon.
    Stülke J; Martin-Verstraete I; Charrier V; Klier A; Deutscher J; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6928-36. PubMed ID: 7592487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon.
    Tortosa P; Le Coq D
    Microbiology (Reading); 1995 Nov; 141 ( Pt 11)():2921-7. PubMed ID: 8535520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system.
    Crutz AM; Steinmetz M; Aymerich S; Richter R; Le Coq D
    J Bacteriol; 1990 Feb; 172(2):1043-50. PubMed ID: 2105292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple phosphorylation of SacY, a Bacillus subtilis transcriptional antiterminator negatively controlled by the phosphotransferase system.
    Tortosa P; Aymerich S; Lindner C; Saier MH; Reizer J; Le Coq D
    J Biol Chem; 1997 Jul; 272(27):17230-7. PubMed ID: 9202047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT.
    Stülke J; Martin-Verstraete I; Zagorec M; Rose M; Klier A; Rapoport G
    Mol Microbiol; 1997 Jul; 25(1):65-78. PubMed ID: 11902727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the glucose-specific phosphotransferase system (PTS) of Staphylococcus carnosus by the antiterminator protein GlcT.
    Knezevic I; Bachem S; Sickmann A; Meyer HE; Stülke J; Hengstenberg W
    Microbiology (Reading); 2000 Sep; 146 ( Pt 9)():2333-2342. PubMed ID: 10974121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators.
    Débarbouillé M; Martin-Verstraete I; Klier A; Rapoport G
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2212-6. PubMed ID: 1900939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system.
    Bachem S; Stülke J
    J Bacteriol; 1998 Oct; 180(20):5319-26. PubMed ID: 9765562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: cloning of the region containing the ptsH and ptsI genes and evidence for a crr-like gene.
    Gonzy-Tréboul G; Steinmetz M
    J Bacteriol; 1987 May; 169(5):2287-90. PubMed ID: 3106335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene organisation and regulatory sequences in the sucrose utilisation cluster of Bacillus stearothermophilus NUB36.
    Li Y; Ferenci T
    Gene; 1997 Aug; 195(2):195-200. PubMed ID: 9305764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis.
    Tobisch S; Stülke J; Hecker M
    J Bacteriol; 1999 Aug; 181(16):4995-5003. PubMed ID: 10438772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique dicistronic operon (ptsI-crr) in Mycoplasma capricolum encoding enzyme I and the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system: cloning, sequencing, promoter analysis, and protein characterization.
    Zhu PP; Reizer J; Peterkofsky A
    Protein Sci; 1994 Nov; 3(11):2115-28. PubMed ID: 7703858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.