These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 1577690)

  • 1. Transcriptional regulation of the ilv-leu operon of Bacillus subtilis.
    Grandoni JA; Zahler SA; Calvo JM
    J Bacteriol; 1992 May; 174(10):3212-9. PubMed ID: 1577690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regions of the Bacillus subtilis ilv-leu operon involved in regulation by leucine.
    Grandoni JA; Fulmer SB; Brizzio V; Zahler SA; Calvo JM
    J Bacteriol; 1993 Dec; 175(23):7581-93. PubMed ID: 8244927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in the gene for a tRNA that functions as a regulator of a transcriptional attenuator in Bacillus subtilis.
    Garrity DB; Zahler SA
    Genetics; 1994 Jul; 137(3):627-36. PubMed ID: 8088508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elaborate transcription regulation of the Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids through global regulators of CcpA, CodY and TnrA.
    Tojo S; Satomura T; Morisaki K; Deutscher J; Hirooka K; Fujita Y
    Mol Microbiol; 2005 Jun; 56(6):1560-73. PubMed ID: 15916606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. trp RNA-binding attenuation protein (TRAP)-trp leader RNA interactions mediate translational as well as transcriptional regulation of the Bacillus subtilis trp operon.
    Merino E; Babitzke P; Yanofsky C
    J Bacteriol; 1995 Nov; 177(22):6362-70. PubMed ID: 7592410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative transcriptional regulation of the ilv-leu operon for biosynthesis of branched-chain amino acids through the Bacillus subtilis global regulator TnrA.
    Tojo S; Satomura T; Morisaki K; Yoshida K; Hirooka K; Fujita Y
    J Bacteriol; 2004 Dec; 186(23):7971-9. PubMed ID: 15547269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon.
    Quinn CL; Stephenson BT; Switzer RL
    J Biol Chem; 1991 May; 266(14):9113-27. PubMed ID: 1709162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CUC triplet confers leucine-dependent regulation of the Bacillus subtilis ilv-leu operon.
    Marta PT; Ladner RD; Grandoni JA
    J Bacteriol; 1996 Apr; 178(7):2150-3. PubMed ID: 8606198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism.
    Choonee N; Even S; Zig L; Putzer H
    Nucleic Acids Res; 2007; 35(5):1578-88. PubMed ID: 17289755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes.
    Henkin TM; Glass BL; Grundy FJ
    J Bacteriol; 1992 Feb; 174(4):1299-306. PubMed ID: 1735721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacillus subtilis ilvB operon: an intersection of global regulons.
    Shivers RP; Sonenshein AL
    Mol Microbiol; 2005 Jun; 56(6):1549-59. PubMed ID: 15916605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional organization and posttranscriptional regulation of the Bacillus subtilis branched-chain amino acid biosynthesis genes.
    Mäder U; Hennig S; Hecker M; Homuth G
    J Bacteriol; 2004 Apr; 186(8):2240-52. PubMed ID: 15060025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the regulatory region of the srfA operon in Bacillus subtilis.
    Nakano MM; Zuber P
    J Bacteriol; 1993 May; 175(10):3188-91. PubMed ID: 8491732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of regulation of the ilvGMEDA operon by using leader-attenuator-galK gene fusions.
    Lawther RP; Lopes JM; Ortuno MJ; White MC
    J Bacteriol; 1990 May; 172(5):2320-7. PubMed ID: 2185212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo and in vitro processing of the Bacillus subtilis transcript coding for glutamyl-tRNA synthetase, serine acetyltransferase, and cysteinyl-tRNA synthetase.
    Pelchat M; Lapointe J
    RNA; 1999 Feb; 5(2):281-9. PubMed ID: 10024179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism.
    Turner RJ; Lu Y; Switzer RL
    J Bacteriol; 1994 Jun; 176(12):3708-22. PubMed ID: 8206849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro transcription from the Escherichia coli ilvIH promoter.
    Willins DA; Calvo JM
    J Bacteriol; 1992 Dec; 174(23):7648-55. PubMed ID: 1447135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The delta subunit of Bacillus subtilis RNA polymerase. An allosteric effector of the initiation and core-recycling phases of transcription.
    Juang YL; Helmann JD
    J Mol Biol; 1994 May; 239(1):1-14. PubMed ID: 7515111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic hybridization of the leu-ilv region in bacilli.
    Biswas GD; Ravin AW
    J Gen Microbiol; 1976 Feb; 92(2):398-404. PubMed ID: 815510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H.
    Wray LV; Ferson AE; Fisher SH
    J Bacteriol; 1997 Sep; 179(17):5494-501. PubMed ID: 9287005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.