These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen. Rogers MS; Hurtado-Guerrero R; Firbank SJ; Halcrow MA; Dooley DM; Phillips SE; Knowles PF; McPherson MJ Biochemistry; 2008 Sep; 47(39):10428-39. PubMed ID: 18771294 [TBL] [Abstract][Full Text] [Related]
7. Formation of Monofluorinated Radical Cofactor in Galactose Oxidase through Copper-Mediated C-F Bond Scission. Li J; Davis I; Griffith WP; Liu A J Am Chem Soc; 2020 Nov; 142(44):18753-18757. PubMed ID: 33091303 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the precursor of galactose oxidase: an unusual self-processing enzyme. Firbank SJ; Rogers MS; Wilmot CM; Dooley DM; Halcrow MA; Knowles PF; McPherson MJ; Phillips SE Proc Natl Acad Sci U S A; 2001 Nov; 98(23):12932-7. PubMed ID: 11698678 [TBL] [Abstract][Full Text] [Related]
9. Active-site maturation and activity of the copper-radical oxidase GlxA are governed by a tryptophan residue. Chaplin AK; Svistunenko DA; Hough MA; Wilson MT; Vijgenboom E; Worrall JA Biochem J; 2017 Feb; 474(5):809-825. PubMed ID: 28093470 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional structure of galactose oxidase: an enzyme with a built-in secondary cofactor. Ito N; Phillips SE; Stevens C; Ogel ZB; McPherson MJ; Keen JN; Yadav KD; Knowles PF Faraday Discuss; 1992; (93):75-84. PubMed ID: 1290941 [TBL] [Abstract][Full Text] [Related]
12. The electronic structure of the Cys-Tyr(*) free radical in galactose oxidase determined by EPR spectroscopy. Lee YK; Whittaker MM; Whittaker JW Biochemistry; 2008 Jun; 47(25):6637-49. PubMed ID: 18512952 [TBL] [Abstract][Full Text] [Related]
13. Tyrosine or Tryptophan? Modifying a Metalloradical Catalytic Site by Removal of the Cys-Tyr Cross-Link in the Galactose 6-Oxidase Homologue GlxA. Chaplin AK; Bernini C; Sinicropi A; Basosi R; Worrall JAR; Svistunenko DA Angew Chem Int Ed Engl; 2017 Jun; 56(23):6502-6506. PubMed ID: 28464409 [TBL] [Abstract][Full Text] [Related]
14. Role of the Tyr-Cys cross-link to the active site properties of galactose oxidase. Rokhsana D; Howells AE; Dooley DM; Szilagyi RK Inorg Chem; 2012 Mar; 51(6):3513-24. PubMed ID: 22372371 [TBL] [Abstract][Full Text] [Related]
15. Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase. Ito N; Phillips SE; Stevens C; Ogel ZB; McPherson MJ; Keen JN; Yadav KD; Knowles PF Nature; 1991 Mar; 350(6313):87-90. PubMed ID: 2002850 [TBL] [Abstract][Full Text] [Related]
16. X-ray crystallographic studies of cofactors in galactose oxidase. Ito N; Knowles PF; Phillips SE Methods Enzymol; 1995; 258():235-62. PubMed ID: 8524154 [No Abstract] [Full Text] [Related]
17. Galactose oxidase models: solution chemistry, and phenoxyl radical generation mediated by the copper status. Michel F; Thomas F; Hamman S; Saint-Aman E; Bucher C; Pierre JL Chemistry; 2004 Sep; 10(17):4115-25. PubMed ID: 15352095 [TBL] [Abstract][Full Text] [Related]
18. Role of a strictly conserved active site tyrosine in cofactor genesis in the copper amine oxidase from Hansenula polymorpha. DuBois JL; Klinman JP Biochemistry; 2006 Mar; 45(10):3178-88. PubMed ID: 16519513 [TBL] [Abstract][Full Text] [Related]
19. Status of the cofactor identity in copper oxidative enzymes. Klinman JP; Dooley DM; Duine JA; Knowles PF; Mondovi B; Villafranca JJ FEBS Lett; 1991 Apr; 282(1):1-4. PubMed ID: 1851106 [TBL] [Abstract][Full Text] [Related]