BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 15777016)

  • 21. Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants.
    Sandalio LM; Espinosa J; Shabala S; León J; Romero-Puertas MC
    J Exp Bot; 2023 Oct; 74(19):5970-5988. PubMed ID: 37668424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactive nitrogen species in cellular signaling.
    Adams L; Franco MC; Estevez AG
    Exp Biol Med (Maywood); 2015 Jun; 240(6):711-7. PubMed ID: 25888647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. S-sulfhydration as a cellular redox regulation.
    Iciek M; Kowalczyk-Pachel D; Bilska-Wilkosz A; Kwiecień I; Górny M; Włodek L
    Biosci Rep; 2015 Nov; 36(2):. PubMed ID: 26607972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitric oxide, other reactive signalling compounds, redox, and reductive stress.
    Hancock JT; Veal D
    J Exp Bot; 2021 Feb; 72(3):819-829. PubMed ID: 32687173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox control of chondrocyte differentiation and chondrogenesis.
    Bai Y; Gong X; Dou C; Cao Z; Dong S
    Free Radic Biol Med; 2019 Feb; 132():83-89. PubMed ID: 30394290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species.
    Brown GC; Borutaite V
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):953-6. PubMed ID: 17052235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study.
    Correa-Aragunde N; Foresi N; Lamattina L
    J Exp Bot; 2015 May; 66(10):2913-21. PubMed ID: 25750426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of protein tyrosine phosphatases by reversible oxidation.
    Ostman A; Frijhoff J; Sandin A; Böhmer FD
    J Biochem; 2011 Oct; 150(4):345-56. PubMed ID: 21856739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders.
    Nakamura T; Oh CK; Zhang X; Tannenbaum SR; Lipton SA
    Antioxid Redox Signal; 2021 Sep; 35(7):531-550. PubMed ID: 33957758
    [No Abstract]   [Full Text] [Related]  

  • 30. Regulation of mitochondrial function and energetics by reactive nitrogen oxides.
    Larsen FJ; Schiffer TA; Weitzberg E; Lundberg JO
    Free Radic Biol Med; 2012 Nov; 53(10):1919-28. PubMed ID: 22989554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The redox regulation of thiol dependent signaling pathways in cancer.
    Giles GI
    Curr Pharm Des; 2006; 12(34):4427-43. PubMed ID: 17168752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species.
    Sevilla F; Camejo D; Ortiz-Espín A; Calderón A; Lázaro JJ; Jiménez A
    J Exp Bot; 2015 May; 66(10):2945-55. PubMed ID: 25873657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulating the regulator: nitric oxide control of post-translational modifications.
    Gupta KJ; Kolbert Z; Durner J; Lindermayr C; Corpas FJ; Brouquisse R; Barroso JB; Umbreen S; Palma JM; Hancock JT; Petrivalsky M; Wendehenne D; Loake GJ
    New Phytol; 2020 Sep; 227(5):1319-1325. PubMed ID: 32339293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of reactive nitrogen species in blood platelet functions.
    Olas B; Wachowicz B
    Platelets; 2007 Dec; 18(8):555-65. PubMed ID: 17852770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants.
    Rinalducci S; Murgiano L; Zolla L
    J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling.
    Matamoros MA; Becana M
    J Exp Bot; 2021 Aug; 72(16):5876-5892. PubMed ID: 33453107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative stress detection: what for? Part II.
    Palmieri B; Sblendorio V
    Eur Rev Med Pharmacol Sci; 2007; 11(1):27-54. PubMed ID: 17405347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms.
    Mikkelsen RB; Wardman P
    Oncogene; 2003 Sep; 22(37):5734-54. PubMed ID: 12947383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids.
    Kansanen E; Jyrkkänen HK; Levonen AL
    Free Radic Biol Med; 2012 Mar; 52(6):973-82. PubMed ID: 22198184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products.
    Levonen AL; Landar A; Ramachandran A; Ceaser EK; Dickinson DA; Zanoni G; Morrow JD; Darley-Usmar VM
    Biochem J; 2004 Mar; 378(Pt 2):373-82. PubMed ID: 14616092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.