These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 15777053)
1. Effect of stress ratio on the fatigue behaviour of compact bone. Ota M; Ishihara S; Fleck C; Goshima T; Eifler D Proc Inst Mech Eng H; 2005; 219(1):13-22. PubMed ID: 15777053 [TBL] [Abstract][Full Text] [Related]
2. Do microcracks decrease or increase fatigue resistance in cortical bone? Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836 [TBL] [Abstract][Full Text] [Related]
3. Damage rate is a predictor of fatigue life and creep strain rate in tensile fatigue of human cortical bone samples. Cotton JR; Winwood K; Zioupos P; Taylor M J Biomech Eng; 2005 Apr; 127(2):213-9. PubMed ID: 15971698 [TBL] [Abstract][Full Text] [Related]
4. Finite element modeling for strain rate dependency of fracture resistance in compact bone. Charoenphan S; Polchai A J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094 [TBL] [Abstract][Full Text] [Related]
5. Finite element modeling of damage accumulation in trabecular bone under cyclic loading. Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682 [TBL] [Abstract][Full Text] [Related]
6. The true toughness of human cortical bone measured with realistically short cracks. Koester KJ; Ager JW; Ritchie RO Nat Mater; 2008 Aug; 7(8):672-7. PubMed ID: 18587403 [TBL] [Abstract][Full Text] [Related]
7. Constitutive laws and failure models for compact bones subjected to dynamic loading. Pithioux M; Chabrand P; Jean M Comput Methods Biomech Biomed Engin; 2002 Oct; 5(5):351-9. PubMed ID: 12745432 [TBL] [Abstract][Full Text] [Related]
8. Orientation dependence of the fracture mechanics of cortical bone. Behiri JC; Bonfield W J Biomech; 1989; 22(8-9):863-72. PubMed ID: 2613722 [TBL] [Abstract][Full Text] [Related]
9. Analysis of crack growth in a 3D Voronoi structure: a model for fatigue in low density trabecular bone. Makiyama AM; Vajjhala S; Gibson LJ J Biomech Eng; 2002 Oct; 124(5):512-20. PubMed ID: 12405593 [TBL] [Abstract][Full Text] [Related]
10. Time-dependent circumferential deformation of cortical bone upon internal radial loading. Brown CU; Norman TL; Kish VL; Gruen TA; Blaha JD J Biomech Eng; 2002 Aug; 124(4):456-61. PubMed ID: 12188212 [TBL] [Abstract][Full Text] [Related]
11. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone. Chong AC; Miller F; Buxton M; Friis EA J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469 [TBL] [Abstract][Full Text] [Related]
12. Experimental investigation of Poisson's ratio as a damage parameter for bone fatigue. Pidaparti RM; Vogt A J Biomed Mater Res; 2002 Feb; 59(2):282-7. PubMed ID: 11745564 [TBL] [Abstract][Full Text] [Related]
13. Creep does not contribute to fatigue in bovine trabecular bone. Moore TL; O'Brien FJ; Gibson LJ J Biomech Eng; 2004 Jun; 126(3):321-9. PubMed ID: 15341168 [TBL] [Abstract][Full Text] [Related]
14. Analysis of creep strain during tensile fatigue of cortical bone. Cotton JR; Zioupos P; Winwood K; Taylor M J Biomech; 2003 Jul; 36(7):943-9. PubMed ID: 12757803 [TBL] [Abstract][Full Text] [Related]
15. Microcrack accumulation at different intervals during fatigue testing of compact bone. O'Brien FJ; Taylor D; Lee TC J Biomech; 2003 Jul; 36(7):973-80. PubMed ID: 12757806 [TBL] [Abstract][Full Text] [Related]