These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 15777097)
41. Hplc/electrospray ionization mass spectrometric analysis of the heterocyclic aromatic amine carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in human milk. Scott KA; Turesky RJ; Wainman BC; Josephy PD Chem Res Toxicol; 2007 Jan; 20(1):88-94. PubMed ID: 17226930 [TBL] [Abstract][Full Text] [Related]
42. Caffeine Cytochrome P450 1A2 Metabolic Phenotype Does Not Predict the Metabolism of Heterocyclic Aromatic Amines in Humans. Turesky RJ; White KK; Wilkens LR; Le Marchand L Chem Res Toxicol; 2015 Aug; 28(8):1603-15. PubMed ID: 26203673 [TBL] [Abstract][Full Text] [Related]
44. Biomonitoring of dietary heterocyclic amines and metabolites in urine by liquid phase microextraction: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a possible biomarker of exposure to dietary PhIP. Busquets R; Frandsen H; Jönsson JÅ; Puignou L; Galceran MT; Skog K Chem Res Toxicol; 2013 Feb; 26(2):233-40. PubMed ID: 23276304 [TBL] [Abstract][Full Text] [Related]
45. Identification of 2-amino-1,7-dimethylimidazo[4,5-g]quinoxaline: an abundant mutagenic heterocyclic aromatic amine formed in cooked beef. Turesky RJ; Goodenough AK; Ni W; McNaughton L; LeMaster DM; Holland RD; Wu RW; Felton JS Chem Res Toxicol; 2007 Mar; 20(3):520-30. PubMed ID: 17316027 [TBL] [Abstract][Full Text] [Related]
46. Lactoperoxidase-catalyzed activation of carcinogenic aromatic and heterocyclic amines. Gorlewska-Roberts KM; Teitel CH; Lay JO; Roberts DW; Kadlubar FF Chem Res Toxicol; 2004 Dec; 17(12):1659-66. PubMed ID: 15606142 [TBL] [Abstract][Full Text] [Related]
47. Effects of meat composition and cooking conditions on the formation of mutagenic imidazoquinoxalines (MeIQx and its methyl derivatives). Jägerstad M; Reuterswärd AL; Grivas S; Olsson K; Negishi C; Sato S Princess Takamatsu Symp; 1985; 16():87-96. PubMed ID: 3916207 [TBL] [Abstract][Full Text] [Related]
48. Detection and measurement of MeIQx in human urine after ingestion of a cooked meat meal. Murray S; Gooderham NJ; Boobis AR; Davies DS Carcinogenesis; 1989 Apr; 10(4):763-5. PubMed ID: 2702724 [TBL] [Abstract][Full Text] [Related]
49. Determination of 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP) and its metabolite 2-hydroxyamino-PhIP by liquid chromatography/electrospray ionization-ion trap mass spectrometry. Prabhu S; Lee MJ; Hu WY; Winnik B; Yang I; Buckley B; Hong JY Anal Biochem; 2001 Nov; 298(2):306-13. PubMed ID: 11700987 [TBL] [Abstract][Full Text] [Related]
50. Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells. Pezdirc M; Žegura B; Filipič M Food Chem Toxicol; 2013 Sep; 59():386-94. PubMed ID: 23810796 [TBL] [Abstract][Full Text] [Related]
51. Can creatine supplementation form carcinogenic heterocyclic amines in humans? Pereira RT; Dörr FA; Pinto E; Solis MY; Artioli GG; Fernandes AL; Murai IH; Dantas WS; Seguro AC; Santinho MA; Roschel H; Carpentier A; Poortmans JR; Gualano B J Physiol; 2015 Sep; 593(17):3959-71. PubMed ID: 26148133 [TBL] [Abstract][Full Text] [Related]
52. Urinary N2-(2'-deoxyguanosin-8-yl)PhIP as a biomarker for PhIP exposure. Fang M; Edwards RJ; Bartlet-Jones M; Taylor GW; Murray S; Boobis AR Carcinogenesis; 2004 Jun; 25(6):1053-62. PubMed ID: 14742322 [TBL] [Abstract][Full Text] [Related]
53. Determination of heterocyclic aromatic amines (HAs) content in samples of household-prepared meat dishes. Warzecha L; Janoszka B; Błaszczyk U; Strózyk M; Bodzek D; Dobosz C J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Mar; 802(1):95-106. PubMed ID: 15036001 [TBL] [Abstract][Full Text] [Related]
54. Urinary mutagenesis and fried red meat intake: influence of cooking temperature, phenotype, and genotype of metabolizing enzymes in a controlled feeding study. Peters U; Sinha R; Bell DA; Rothman N; Grant DJ; Watson MA; Kulldorff M; Brooks LR; Warren SH; DeMarini DM Environ Mol Mutagen; 2004; 43(1):53-74. PubMed ID: 14743346 [TBL] [Abstract][Full Text] [Related]
55. Differential toxicity of heterocyclic aromatic amines and their mixture in metabolically competent HepaRG cells. Dumont J; Jossé R; Lambert C; Anthérieu S; Le Hegarat L; Aninat C; Robin MA; Guguen-Guillouzo C; Guillouzo A Toxicol Appl Pharmacol; 2010 Jun; 245(2):256-63. PubMed ID: 20307560 [TBL] [Abstract][Full Text] [Related]
56. Effects of varying degrees of doneness on the formation of heterocyclic aromatic amines in chicken and beef satay. Jinap S; Mohd-Mokhtar MS; Farhadian A; Hasnol ND; Jaafar SN; Hajeb P Meat Sci; 2013 Jun; 94(2):202-7. PubMed ID: 23501251 [TBL] [Abstract][Full Text] [Related]
57. Influence of lignification and feruloylation of maize cell walls on the adsorption of heterocyclic aromatic amines. Funk C; Weber P; Thilker J; Grabber JH; Steinhart H; Bunzel M J Agric Food Chem; 2006 Mar; 54(5):1860-7. PubMed ID: 16506845 [TBL] [Abstract][Full Text] [Related]
58. Impact of Precursors Creatine, Creatinine, and Glucose on the Formation of Heterocyclic Aromatic Amines in Grilled Patties of Various Animal Species. Gibis M; Weiss J J Food Sci; 2015 Nov; 80(11):C2430-9. PubMed ID: 26445401 [TBL] [Abstract][Full Text] [Related]
59. Entrapment by magnetic microcapsules of the protein pyrolysates IQ, PhIP and Glu-P-1, and alteration of IQ metabolite exposure within the rat gastrointestinal tract by risk-modulating components of the human diet. O'Neill I; Ohgaki H; Ellul A; Turesky RJ Carcinogenesis; 1992 Dec; 13(12):2353-9. PubMed ID: 1473244 [TBL] [Abstract][Full Text] [Related]
60. Metabolism of heterocyclic aromatic amines and strategies of human biomonitoring. Turesky RJ; Fay LB; Welti DH Princess Takamatsu Symp; 1995; 23():59-68. PubMed ID: 8844796 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]