These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 1577743)
1. Identification and partial characterization of a low affinity metal-binding site in the light chain of tetanus toxin. Wright JF; Pernollet M; Reboul A; Aude C; Colomb MG J Biol Chem; 1992 May; 267(13):9053-8. PubMed ID: 1577743 [TBL] [Abstract][Full Text] [Related]
2. Functional characterization of the catalytic site of the tetanus toxin light chain using permeabilized adrenal chromaffin cells. Höhne-Zell B; Stecher B; Gratzl M FEBS Lett; 1993 Dec; 336(1):175-80. PubMed ID: 8262205 [TBL] [Abstract][Full Text] [Related]
3. Surface topography of histidine residues of tetanus toxin probed by immobilized-metal-ion affinity chromatography. Rossetto O; Schiavo G; Polverino de Laureto P; Fabbiani S; Montecucco C Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):9-12. PubMed ID: 1637325 [TBL] [Abstract][Full Text] [Related]
4. Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand. Shapiro RE; Specht CD; Collins BE; Woods AS; Cotter RJ; Schnaar RL J Biol Chem; 1997 Nov; 272(48):30380-6. PubMed ID: 9374528 [TBL] [Abstract][Full Text] [Related]
5. Interaction between tetanus toxin and rabbit kidney: a comparison with rat brain preparations. Habermann E; Albus U J Neurochem; 1986 Apr; 46(4):1219-26. PubMed ID: 3950626 [TBL] [Abstract][Full Text] [Related]
6. Limited proteolysis of tetanus toxin. Relation to activity and identification of cleavage sites. Krieglstein KG; Henschen AH; Weller U; Habermann E Eur J Biochem; 1991 Nov; 202(1):41-51. PubMed ID: 1935979 [TBL] [Abstract][Full Text] [Related]
7. Putative copper- and zinc-binding motifs in Streptococcus pneumoniae identified by immobilized metal affinity chromatography and mass spectrometry. Sun X; Xiao CL; Ge R; Yin X; Li H; Li N; Yang X; Zhu Y; He X; He QY Proteomics; 2011 Aug; 11(16):3288-98. PubMed ID: 21751346 [TBL] [Abstract][Full Text] [Related]
8. Exploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals. Dayanithi G; Stecher B; Höhne-Zell B; Yamasaki S; Binz T; Weller U; Niemann H; Gratzl M Neuroscience; 1994 Jan; 58(2):423-31. PubMed ID: 8152548 [TBL] [Abstract][Full Text] [Related]
9. Chains and fragments of tetanus toxin. Separation, reassociation and pharmacological properties. Weller U; Dauzenroth ME; Meyer zu Heringdorf D; Habermann E Eur J Biochem; 1989 Jul; 182(3):649-56. PubMed ID: 2753037 [TBL] [Abstract][Full Text] [Related]
10. Proteolytic fragmentation of tetanus toxin by subcellular fractions of JY, a B lymphoblastoid cell line. Reboul A; Arvieux J; Wright JF; Colomb MG Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):47-51. PubMed ID: 1649603 [TBL] [Abstract][Full Text] [Related]
11. Direct zinc binding to purified rhodopsin and disc membranes. Shuster TA; Nagy AK; Conly DC; Farber DB Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):123-8. PubMed ID: 1540127 [TBL] [Abstract][Full Text] [Related]
12. Preparation of affinity-purified, biotinylated tetanus toxin, and characterization and localization of cell surface binding sites on nerve growth factor-treated PC12 cells. Fujita K; Guroff G; Yavin E; Goping G; Orenberg R; Lazarovici P Neurochem Res; 1990 Apr; 15(4):373-83. PubMed ID: 2388710 [TBL] [Abstract][Full Text] [Related]
13. Reevaluation of the role of gangliosides as receptors for tetanus toxin. Critchley DR; Habig WH; Fishman PH J Neurochem; 1986 Jul; 47(1):213-22. PubMed ID: 3711900 [TBL] [Abstract][Full Text] [Related]
15. Structure of tetanus toxin. I. Breakdown of the toxin molecule and discrimination between polypeptide fragments. Helting TB; Zwisler O J Biol Chem; 1977 Jan; 252(1):187-93. PubMed ID: 401808 [TBL] [Abstract][Full Text] [Related]
16. Similarities in the heavy and light chains of tetanus toxin suggested by their amino acid compositions. Taylor CF; Britton P; van Heyningen S Biochem J; 1983 Mar; 209(3):897-9. PubMed ID: 6870797 [TBL] [Abstract][Full Text] [Related]
17. Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells. Höhne-Zell B; Ecker A; Weller U; Gratzl M FEBS Lett; 1994 Nov; 355(2):131-4. PubMed ID: 7982485 [TBL] [Abstract][Full Text] [Related]
18. The effect of zinc and other divalent cations on the structure and function of human alpha 2-macroglobulin. Pratt CW; Pizzo SV Biochim Biophys Acta; 1984 Dec; 791(2):123-30. PubMed ID: 6210110 [TBL] [Abstract][Full Text] [Related]
19. Identification of a binding site for ganglioside on the receptor binding domain of tetanus toxin. Louch HA; Buczko ES; Woody MA; Venable RM; Vann WF Biochemistry; 2002 Nov; 41(46):13644-52. PubMed ID: 12427026 [TBL] [Abstract][Full Text] [Related]
20. Zinc(II) and copper(II) binding to serum albumin. A comparative study of dog, bovine, and human albumin. Masuoka J; Saltman P J Biol Chem; 1994 Oct; 269(41):25557-61. PubMed ID: 7929257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]