BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 15777645)

  • 1. Scaffold-based bone engineering by using genetically modified cells.
    Hutmacher DW; Garcia AJ
    Gene; 2005 Feb; 347(1):1-10. PubMed ID: 15777645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human bone marrow stromal cells: In vitro expansion and differentiation for bone engineering.
    Ciapetti G; Ambrosio L; Marletta G; Baldini N; Giunti A
    Biomaterials; 2006 Dec; 27(36):6150-60. PubMed ID: 16965811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Runx2 genetic engineering and in vitro maturation of tissue-engineered constructs on the repair of critical size bone defects.
    Byers BA; Guldberg RE; Hutmacher DW; García AJ
    J Biomed Mater Res A; 2006 Mar; 76(3):646-55. PubMed ID: 16287095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells.
    Zhang ZY; Teoh SH; Chong MS; Schantz JT; Fisk NM; Choolani MA; Chan J
    Stem Cells; 2009 Jan; 27(1):126-37. PubMed ID: 18832592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolving concepts in bone tissue engineering.
    Cowan CM; Soo C; Ting K; Wu B
    Curr Top Dev Biol; 2005; 66():239-85. PubMed ID: 15797456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesenchymal cells for skeletal tissue engineering.
    Panetta NJ; Gupta DM; Quarto N; Longaker MT
    Panminerva Med; 2009 Mar; 51(1):25-41. PubMed ID: 19352307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone engineering with adipose tissue derived stromal cells.
    Weinzierl K; Hemprich A; Frerich B
    J Craniomaxillofac Surg; 2006 Dec; 34(8):466-71. PubMed ID: 17157521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion.
    Mauney JR; Volloch V; Kaplan DL
    Biomaterials; 2005 Nov; 26(31):6167-75. PubMed ID: 15913765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study.
    Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y
    Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrix-mediated retention of in vitro osteogenic differentiation potential and in vivo bone-forming capacity by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion.
    Mauney JR; Kirker-Head C; Abrahamson L; Gronowicz G; Volloch V; Kaplan DL
    J Biomed Mater Res A; 2006 Dec; 79(3):464-75. PubMed ID: 16752403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetically engineered mesenchymal stem cells: The ongoing research for bone tissue engineering.
    Hong D; Chen HX; Ge R; Li JC
    Anat Rec (Hoboken); 2010 Mar; 293(3):531-7. PubMed ID: 20027644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective.
    Hutmacher DW; Schantz JT; Lam CX; Tan KC; Lim TC
    J Tissue Eng Regen Med; 2007; 1(4):245-60. PubMed ID: 18038415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose--derived stem cells in vitro and in vivo.
    Zhang X; Yang M; Lin L; Chen P; Ma KT; Zhou CY; Ao YF
    Calcif Tissue Int; 2006 Sep; 79(3):169-78. PubMed ID: 16969589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retroviral-mediated gene therapy for the differentiation of primary cells into a mineralizing osteoblastic phenotype.
    Phillips JE; García AJ
    Methods Mol Biol; 2008; 433():333-54. PubMed ID: 18679633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periosteal cells in bone tissue engineering.
    Hutmacher DW; Sittinger M
    Tissue Eng; 2003; 9 Suppl 1():S45-64. PubMed ID: 14511470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells.
    Liu G; Shu C; Cui L; Liu W; Cao Y
    Cryobiology; 2008 Jun; 56(3):209-15. PubMed ID: 18430412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological and biophysical principles in extracorporal bone tissue engineering. Part I.
    Meyer U; Joos U; Wiesmann HP
    Int J Oral Maxillofac Surg; 2004 Jun; 33(4):325-32. PubMed ID: 15145032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased levels of xylosyltransferase I correlate with the mineralization of the extracellular matrix during osteogenic differentiation of mesenchymal stem cells.
    Müller B; Prante C; Gastens M; Kuhn J; Kleesiek K; Götting C
    Matrix Biol; 2008 Mar; 27(2):139-49. PubMed ID: 17980567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.