BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 15777679)

  • 1. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off.
    Saxon LK; Robling AG; Alam I; Turner CH
    Bone; 2005 Mar; 36(3):454-64. PubMed ID: 15777679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts.
    Robling AG; Hinant FM; Burr DB; Turner CH
    J Bone Miner Res; 2002 Aug; 17(8):1545-54. PubMed ID: 12162508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance.
    Warden SJ; Hurst JA; Sanders MS; Turner CH; Burr DB; Li J
    J Bone Miner Res; 2005 May; 20(5):809-16. PubMed ID: 15824854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5-10 Hz.
    Warden SJ; Turner CH
    Bone; 2004 Feb; 34(2):261-70. PubMed ID: 14962804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-dose estrogen treatment suppresses periosteal bone formation in response to mechanical loading.
    Saxon LK; Turner CH
    Bone; 2006 Dec; 39(6):1261-7. PubMed ID: 16934543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No effect of verapamil on the local bone response to in vivo mechanical loading.
    Samnegård E; Cullen DM; Akhter MP; Kimmel DB
    J Orthop Res; 2001 Mar; 19(2):328-36. PubMed ID: 11347708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta.
    Saxon LK; Robling AG; Castillo AB; Mohan S; Turner CH
    Am J Physiol Endocrinol Metab; 2007 Aug; 293(2):E484-91. PubMed ID: 17535856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading.
    Robling AG; Burr DB; Turner CH
    J Bone Miner Res; 2000 Aug; 15(8):1596-602. PubMed ID: 10934659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the cortical bone response to mechanical loading.
    Hagino H; Kuraoka M; Kameyama Y; Okano T; Teshima R
    Bone; 2005 Mar; 36(3):444-53. PubMed ID: 15777678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density.
    Hsieh YF; Silva MJ
    J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading.
    Chen XY; Zhang XZ; Guo Y; Li RX; Lin JJ; Wei Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S88-95. PubMed ID: 18448217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The establishment of a new mechanobiology model of bone and functional adaptation studies in vivo].
    Chen XY; Zhang XZ; Zhang YL; Zhang CQ; Zhao HB; Zhang YH; Mao Y
    Zhonghua Yi Xue Za Zhi; 2007 May; 87(17):1160-4. PubMed ID: 17686232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.
    Silva MJ; Touhey DC
    J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.
    Muir P; Sample SJ; Barrett JG; McCarthy J; Vanderby R; Markel MD; Prokuski LJ; Kalscheur VL
    Bone; 2007 Apr; 40(4):948-56. PubMed ID: 17234467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia.
    Fritton JC; Myers ER; Wright TM; van der Meulen MC
    Bone; 2005 Jun; 36(6):1030-8. PubMed ID: 15878316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone response to alternate-day mechanical loading of the rat tibia.
    Raab-Cullen DM; Akhter MP; Kimmel DB; Recker RR
    J Bone Miner Res; 1994 Feb; 9(2):203-11. PubMed ID: 8140933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone response to mechanical loading in adult rats with collagen-induced arthritis.
    Kameyama Y; Hagino H; Okano T; Enokida M; Fukata S; Teshima R
    Bone; 2004 Oct; 35(4):948-56. PubMed ID: 15454102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femoral neck response to exercise and subsequent deconditioning in young and adult rats.
    Järvinen TL; Pajamäki I; Sievänen H; Vuohelainen T; Tuukkanen J; Järvinen M; Kannus P
    J Bone Miner Res; 2003 Jul; 18(7):1292-9. PubMed ID: 12854840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading.
    Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P
    Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth hormone is permissive for skeletal adaptation to mechanical loading.
    Forwood MR; Li L; Kelly WL; Bennett MB
    J Bone Miner Res; 2001 Dec; 16(12):2284-90. PubMed ID: 11760843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.