BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15777770)

  • 1. Xanthine oxidase, nitric oxide synthase and phospholipase A(2) produce reactive oxygen species via mitochondria.
    Sanganahalli BG; Joshi PG; Joshi NB
    Brain Res; 2005 Mar; 1037(1-2):200-3. PubMed ID: 15777770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyanide-induced generation of oxidative species: involvement of nitric oxide synthase and cyclooxygenase-2.
    Gunasekar PG; Borowitz JL; Isom GE
    J Pharmacol Exp Ther; 1998 Apr; 285(1):236-41. PubMed ID: 9536016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.
    Wadley GD; Nicolas MA; Hiam DS; McConell GK
    Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of nitric oxide synthase and ROS-mediated activation of L-type voltage-gated Ca2+ channels in NMDA-induced DPYSL3 degradation.
    Kowara R; Moraleja KL; Chakravarthy B
    Brain Res; 2006 Nov; 1119(1):40-9. PubMed ID: 16987501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further evidence for the role of free radicals in the limb teratogenicity of L-NAME.
    Fantel AG; Person RE
    Teratology; 2002 Jul; 66(1):24-32. PubMed ID: 12115777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase.
    Kinugawa S; Huang H; Wang Z; Kaminski PM; Wolin MS; Hintze TH
    Circ Res; 2005 Feb; 96(3):355-62. PubMed ID: 15637297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide enhances MPP(+)-induced hydroxyl radical generation via depolarization activated nitric oxide synthase in rat striatum.
    Obata T; Yamanaka Y
    Brain Res; 2001 Jun; 902(2):223-8. PubMed ID: 11384616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of aliphatic, naphthenic, and aromatic hydrocarbons on production of reactive oxygen species and reactive nitrogen species in rat brain synaptosome fraction: the involvement of calcium, nitric oxide synthase, mitochondria, and phospholipase A.
    Myhre O; Fonnum F
    Biochem Pharmacol; 2001 Jul; 62(1):119-28. PubMed ID: 11377403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells.
    Domico LM; Cooper KR; Bernard LP; Zeevalk GD
    Neurotoxicology; 2007 Nov; 28(6):1079-91. PubMed ID: 17597214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion.
    Almeida A; Heales SJ; Bolaños JP; Medina JM
    Brain Res; 1998 Apr; 790(1-2):209-16. PubMed ID: 9593899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMPA receptor activation causes preferential mitochondrial Ca²⁺ load and oxidative stress in motor neurons.
    Joshi DC; Tewari BP; Singh M; Joshi PG; Joshi NB
    Brain Res; 2015 Aug; 1616():1-9. PubMed ID: 25944722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA and non-NMDA receptors stimulation causes differential oxidative stress in rat cortical slices.
    Sanganahalli BG; Joshi PG; Joshi NB
    Neurochem Int; 2006 Oct; 49(5):475-80. PubMed ID: 16860439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species derived from xanthine oxidase interrupt dimerization of breast cancer resistance protein, resulting in suppression of uric acid excretion to the intestinal lumen.
    Ogura J; Kuwayama K; Sasaki S; Kaneko C; Koizumi T; Yabe K; Tsujimoto T; Takeno R; Takaya A; Kobayashi M; Yamaguchi H; Iseki K
    Biochem Pharmacol; 2015 Sep; 97(1):89-98. PubMed ID: 26119820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allopurinol protects human glomerular endothelial cells from high glucose-induced reactive oxygen species generation, p53 overexpression and endothelial dysfunction.
    Eleftheriadis T; Pissas G; Antoniadi G; Liakopoulos V; Stefanidis I
    Int Urol Nephrol; 2018 Jan; 50(1):179-186. PubMed ID: 29094329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species in rats with chronic post-ischemia pain.
    Kwak KH; Han CG; Lee SH; Jeon Y; Park SS; Kim SO; Baek WY; Hong JG; Lim DG
    Acta Anaesthesiol Scand; 2009 May; 53(5):648-56. PubMed ID: 19419360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart.
    Saavedra WF; Paolocci N; St John ME; Skaf MW; Stewart GC; Xie JS; Harrison RW; Zeichner J; Mudrick D; Marbán E; Kass DA; Hare JM
    Circ Res; 2002 Feb; 90(3):297-304. PubMed ID: 11861418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NO synthase and xanthine oxidase activities of rabbit brain synaptosomes: peroxynitrite formation as a causative factor of neurotoxicity.
    Deliconstantinos G; Villiotou V
    Neurochem Res; 1996 Jan; 21(1):51-6. PubMed ID: 8833224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-induced cerebral vasodilatation in vivo involves activation of phosphatidylinositol-3 kinase, NADPH-oxidase, and nitric oxide synthase.
    Paravicini TM; Miller AA; Drummond GR; Sobey CG
    J Cereb Blood Flow Metab; 2006 Jun; 26(6):836-45. PubMed ID: 16222243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide induces hydroxyl radical generation in rat hearts via depolarization-induced nitric oxide synthase activation.
    Obata T; Yamanaka Y
    Naunyn Schmiedebergs Arch Pharmacol; 2001 Jul; 364(1):59-65. PubMed ID: 11485040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.
    Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S
    J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.