These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 15777865)

  • 1. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging.
    Zambreanu L; Wise RG; Brooks JCW; Iannetti GD; Tracey I
    Pain; 2005 Apr; 114(3):397-407. PubMed ID: 15777865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving the Brainstem Contributions to Attentional Analgesia.
    Brooks JC; Davies WE; Pickering AE
    J Neurosci; 2017 Mar; 37(9):2279-2291. PubMed ID: 28096471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential coding of hyperalgesia in the human brain: a functional MRI study.
    Maihöfner C; Handwerker HO
    Neuroimage; 2005 Dec; 28(4):996-1006. PubMed ID: 16112876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal fMRI reveals decreased descending inhibition during secondary mechanical hyperalgesia.
    Rempe T; Wolff S; Riedel C; Baron R; Stroman PW; Jansen O; Gierthmühlen J
    PLoS One; 2014; 9(11):e112325. PubMed ID: 25372292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging.
    Dunckley P; Wise RG; Fairhurst M; Hobden P; Aziz Q; Chang L; Tracey I
    J Neurosci; 2005 Aug; 25(32):7333-41. PubMed ID: 16093383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation of UV-B-induced thermal and mechanical hyperalgesia in the human brain: a functional MRI study.
    Seifert F; Jungfer I; Schmelz M; Maihöfner C
    Hum Brain Mapp; 2008 Dec; 29(12):1327-42. PubMed ID: 17948883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat.
    Kovelowski CJ; Ossipov MH; Sun H; Lai J; Malan TP; Porreca F
    Pain; 2000 Sep; 87(3):265-273. PubMed ID: 10963906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperalgesia and sensitization of dorsal horn neurons following activation of NK-1 receptors in the rostral ventromedial medulla.
    Khasabov SG; Malecha P; Noack J; Tabakov J; Giesler GJ; Simone DA
    J Neurophysiol; 2017 Nov; 118(5):2727-2744. PubMed ID: 28794197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain projections from the medullary dorsal reticular nucleus: an anterograde and retrograde tracing study in the rat.
    Leite-Almeida H; Valle-Fernandes A; Almeida A
    Neuroscience; 2006 Jun; 140(2):577-95. PubMed ID: 16563637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prostaglandin E2 in the midbrain periaqueductal gray produces hyperalgesia and activates pain-modulating circuitry in the rostral ventromedial medulla.
    Heinricher MM; Martenson ME; Neubert MJ
    Pain; 2004 Jul; 110(1-2):419-26. PubMed ID: 15275794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain processing of capsaicin-induced secondary hyperalgesia: a functional MRI study.
    Baron R; Baron Y; Disbrow E; Roberts TP
    Neurology; 1999 Aug; 53(3):548-57. PubMed ID: 10449119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brainstem Mechanisms of Pain Modulation: A within-Subjects 7T fMRI Study of Placebo Analgesic and Nocebo Hyperalgesic Responses.
    Crawford LS; Mills EP; Hanson T; Macey PM; Glarin R; Macefield VG; Keay KA; Henderson LA
    J Neurosci; 2021 Nov; 41(47):9794-9806. PubMed ID: 34697093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of fos expression in the rostral medulla and caudal pons evoked by noxious craniovascular stimulation and periaqueductal gray stimulation in the cat.
    Knight YE; Classey JD; Lasalandra MP; Akerman S; Kowacs F; Hoskin KL; Goadsby PJ
    Brain Res; 2005 May; 1045(1-2):1-11. PubMed ID: 15910757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal and supraspinal processing of thermal stimuli: an fMRI study.
    Rempe T; Wolff S; Riedel C; Baron R; Stroman PW; Jansen O; Gierthmühlen J
    J Magn Reson Imaging; 2015 Apr; 41(4):1046-55. PubMed ID: 24737401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of hyperalgesia in the monosodium iodoacetate model of osteoarthritis pain.
    Abaei M; Sagar DR; Stockley EG; Spicer CH; Prior M; Chapman V; Auer DP
    Mol Pain; 2016; 12():. PubMed ID: 27068285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capsaicin-evoked brain activation and central sensitization in anaesthetised rats: a functional magnetic resonance imaging study.
    Moylan Governo RJ; Morris PG; Prior MJ; Marsden CA; Chapman V
    Pain; 2006 Dec; 126(1-3):35-45. PubMed ID: 16843597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Descending control of persistent pain: inhibitory or facilitatory?
    Vanegas H; Schaible HG
    Brain Res Brain Res Rev; 2004 Nov; 46(3):295-309. PubMed ID: 15571771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociable neural activity to self- vs. externally administered thermal hyperalgesia: a parametric fMRI study.
    Mohr C; Leyendecker S; Helmchen C
    Eur J Neurosci; 2008 Feb; 27(3):739-49. PubMed ID: 18279326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ascending input to the midbrain periaqueductal gray of the primate.
    Mantyh PW
    J Comp Neurol; 1982 Oct; 211(1):50-64. PubMed ID: 7174883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms.
    LaMotte RH; Shain CN; Simone DA; Tsai EF
    J Neurophysiol; 1991 Jul; 66(1):190-211. PubMed ID: 1919666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.