BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15778093)

  • 21. Differential abilities of mouse liver parenchymal and nonparenchymal cells in HDL and LDL (native and oxidized) association and cholesterol efflux.
    Lapointe J; Truong TQ; Falstrault L; Brissette L
    Biochem Cell Biol; 2006 Apr; 84(2):250-6. PubMed ID: 16609706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The apolipoprotein E-dependent low density lipoprotein cholesteryl ester selective uptake pathway in murine adrenocortical cells involves chondroitin sulfate proteoglycans and an alpha 2-macroglobulin receptor.
    Swarnakar S; Beers J; Strickland DK; Azhar S; Williams DL
    J Biol Chem; 2001 Jun; 276(24):21121-8. PubMed ID: 11274190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mouse CD36 has opposite effects on LDL and oxidized LDL metabolism in vivo.
    Luangrath V; Brodeur MR; Rhainds D; Brissette L
    Arterioscler Thromb Vasc Biol; 2008 Jul; 28(7):1290-5. PubMed ID: 18436808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uptake and transport of high-density lipoprotein (HDL) and HDL-associated alpha-tocopherol by an in vitro blood-brain barrier model.
    Balazs Z; Panzenboeck U; Hammer A; Sovic A; Quehenberger O; Malle E; Sattler W
    J Neurochem; 2004 May; 89(4):939-50. PubMed ID: 15140193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of the scavenger receptor BI and the LDL receptor by activators of aldosterone production, angiotensin II and PMA, in the human NCI-H295R adrenocortical cell line.
    Pilon A; Martin G; Bultel-Brienne S; Junquero D; Delhon A; Fruchart JC; Staels B; Clavey V
    Biochim Biophys Acta; 2003 Apr; 1631(3):218-28. PubMed ID: 12668173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low- and high-density lipoprotein metabolism in HepG2 cells expressing various levels of apolipoprotein E.
    Charpentier D; Tremblay C; Rassart E; Rhainds D; Auger A; Milne RW; Brissette L
    Biochemistry; 2000 Dec; 39(51):16084-91. PubMed ID: 11123936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Apolipoprotein CI inhibits scavenger receptor BI and increases plasma HDL levels in vivo.
    de Haan W; Out R; Berbée JF; van der Hoogt CC; van Dijk KW; van Berkel TJ; Romijn JA; Jukema JW; Havekes LM; Rensen PC
    Biochem Biophys Res Commun; 2008 Dec; 377(4):1294-8. PubMed ID: 18992221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of SR-BI protein levels by phosphorylation of its associated protein, PDZK1.
    Nakamura T; Shibata N; Nishimoto-Shibata T; Feng D; Ikemoto M; Motojima K; Iso-O N; Tsukamoto K; Tsujimoto M; Arai H
    Proc Natl Acad Sci U S A; 2005 Sep; 102(38):13404-9. PubMed ID: 16174736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphatidylinositol-3-kinase regulates scavenger receptor class B type I subcellular localization and selective lipid uptake in hepatocytes.
    Shetty S; Eckhardt ER; Post SR; van der Westhuyzen DR
    Arterioscler Thromb Vasc Biol; 2006 Sep; 26(9):2125-31. PubMed ID: 16794223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SR-BI-mediated HDL cholesteryl ester delivery in the adrenal gland.
    Connelly MA
    Mol Cell Endocrinol; 2009 Mar; 300(1-2):83-8. PubMed ID: 18840501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Blockade of scavenger receptor class B type I raises high density lipoprotein cholesterol levels but exacerbates atherosclerotic lesion formation in apolipoprotein E deficient mice.
    Kitayama K; Nishizawa T; Abe K; Wakabayashi K; Oda T; Inaba T; Amemiya Y
    J Pharm Pharmacol; 2006 Dec; 58(12):1629-38. PubMed ID: 17331327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opposite effect of caveolin-1 in the metabolism of high-density and low-density lipoproteins.
    Truong TQ; Aubin D; Bourgeois P; Falstrault L; Brissette L
    Biochim Biophys Acta; 2006 Jan; 1761(1):24-36. PubMed ID: 16443388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scavenger receptor class B, type I mediates uptake of lipoprotein-associated phosphatidylcholine by primary porcine cerebrovascular endothelial cells.
    Sovic A; Balazs Z; Hrzenjak A; Reicher H; Panzenboeck U; Malle E; Sattler W
    Neurosci Lett; 2004 Sep; 368(1):11-4. PubMed ID: 15342124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective uptake of low-density lipoprotein-associated cholesteryl esters by human fibroblasts, human HepG2 hepatoma cells and J774 macrophages in culture.
    Rinninger F; Brundert M; Jäckle S; Kaiser T; Greten H
    Biochim Biophys Acta; 1995 Mar; 1255(2):141-53. PubMed ID: 7696328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism.
    Shachter NS
    Curr Opin Lipidol; 2001 Jun; 12(3):297-304. PubMed ID: 11353333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coexpression of CLA-1 and human PDZK1 in murine liver modulates HDL cholesterol metabolism.
    Komori H; Arai H; Kashima T; Huby T; Kita T; Ueda Y
    Arterioscler Thromb Vasc Biol; 2008 Jul; 28(7):1298-303. PubMed ID: 18403724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apolipoprotein C-I induces apoptosis in human aortic smooth muscle cells via recruiting neutral sphingomyelinase.
    Kolmakova A; Kwiterovich P; Virgil D; Alaupovic P; Knight-Gibson C; Martin SF; Chatterjee S
    Arterioscler Thromb Vasc Biol; 2004 Feb; 24(2):264-9. PubMed ID: 14670935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor.
    Ooi EM; Barrett PH; Chan DC; Watts GF
    Clin Sci (Lond); 2008 May; 114(10):611-24. PubMed ID: 18399797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolism of high density lipoprotein apolipoprotein A-I and cholesteryl ester in insulin resistant dog: a stable isotope study.
    Briand F; Bailhache E; Nguyen P; Krempf M; Magot T; Ouguerram K
    Diabetes Obes Metab; 2007 Jan; 9(1):139-42. PubMed ID: 17199733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The composition, structural properties and binding of very-low-density and low-density lipoproteins to the LDL receptor in normo- and hypertriglyceridemia: relation to the apolipoprotein E phenotype.
    Dergunov AD; Novoselov AV; Visvikis S; Siest G; Yakushkin VV; Tsibulsky V
    Biol Chem; 2005 May; 386(5):441-52. PubMed ID: 15927888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.