These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 1577812)
21. A multisubstrate adduct inhibitor of a purine biosynthetic enzyme with a picomolar dissociation constant. Inglese J; Blatchly RA; Benkovic SJ J Med Chem; 1989 May; 32(5):937-40. PubMed ID: 2709379 [No Abstract] [Full Text] [Related]
22. Synthesis of 5,11-methenyltetrahydrohomofolate and its antifolate activity in vitro. Caperelli CA; Domanico P; Benkovic SJ J Med Chem; 1981 Sep; 24(9):1086-8. PubMed ID: 7288824 [TBL] [Abstract][Full Text] [Related]
23. Developmental changes in the folate-dependent enzymes of de novo purine biosynthesis in rat brain. Domínguez J; Ordóñez LA J Neurochem; 1982 Mar; 38(3):625-30. PubMed ID: 7057182 [TBL] [Abstract][Full Text] [Related]
24. Crystal structures of human GAR Tfase at low and high pH and with substrate beta-GAR. Zhang Y; Desharnais J; Greasley SE; Beardsley GP; Boger DL; Wilson IA Biochemistry; 2002 Dec; 41(48):14206-15. PubMed ID: 12450384 [TBL] [Abstract][Full Text] [Related]
25. purU, a source of formate for purT-dependent phosphoribosyl-N-formylglycinamide synthesis. Nagy PL; McCorkle GM; Zalkin H J Bacteriol; 1993 Nov; 175(21):7066-73. PubMed ID: 8226647 [TBL] [Abstract][Full Text] [Related]
26. Isolation of a multifunctional protein with aminoimidazole ribonucleotide synthetase, glycinamide ribonucleotide synthetase, and glycinamide ribonucleotide transformylase activities: characterization of aminoimidazole ribonucleotide synthetase. Schrimsher JL; Schendel FJ; Stubbe J Biochemistry; 1986 Jul; 25(15):4356-65. PubMed ID: 3756144 [TBL] [Abstract][Full Text] [Related]
27. De novo purine nucleotide biosynthesis: cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. coli. Aimi J; Qiu H; Williams J; Zalkin H; Dixon JE Nucleic Acids Res; 1990 Nov; 18(22):6665-72. PubMed ID: 2147474 [TBL] [Abstract][Full Text] [Related]
28. A novel class of monoglutamated antifolates exhibits tight-binding inhibition of human glycinamide ribonucleotide formyltransferase and potent activity against solid tumors. Habeck LL; Leitner TA; Shackelford KA; Gossett LS; Schultz RM; Andis SL; Shih C; Grindey GB; Mendelsohn LG Cancer Res; 1994 Feb; 54(4):1021-6. PubMed ID: 8313357 [TBL] [Abstract][Full Text] [Related]
29. Formyl phosphate: a proposed intermediate in the reaction catalyzed by Escherichia coli PurT GAR transformylase. Marolewski AE; Mattia KM; Warren MS; Benkovic SJ Biochemistry; 1997 Jun; 36(22):6709-16. PubMed ID: 9184151 [TBL] [Abstract][Full Text] [Related]
30. Purine de novo synthesis and enzymes at the inosinic branch point in human lymphocytes. Marinello E; Pagani R; Carlucci F; Pizzichini M; Valerio P; Molinelli M; Dispensa E; Tabucchi A Biochem Soc Trans; 1991 Aug; 19(3):343S. PubMed ID: 1723703 [No Abstract] [Full Text] [Related]
31. The 6S- and 6R-diastereomers of 5, 10-dideaza-5, 6, 7, 8-tetrahydrofolate are equiactive inhibitors of de novo purine synthesis. Moran RG; Baldwin SW; Taylor EC; Shih C J Biol Chem; 1989 Dec; 264(35):21047-51. PubMed ID: 2592365 [TBL] [Abstract][Full Text] [Related]
32. Development of a mouse model for the study of human purine metabolism. Barnes TS; Brodsky GL; Barela GJ; Bleskan JH; Patterson D Adv Exp Med Biol; 1994; 370():517-21. PubMed ID: 7660960 [No Abstract] [Full Text] [Related]
33. Substrate specificity of glycinamide ribonucleotide synthetase from chicken liver. Antle VD; Liu D; McKellar BR; Caperelli CA; Hua M; Vince R J Biol Chem; 1996 Apr; 271(14):8192-5. PubMed ID: 8626510 [TBL] [Abstract][Full Text] [Related]
34. Synthesis of 10-acetyl-5,8-dideazafolic acid: a potent inhibitor of glycinamide ribonucleotide transformylase. Caperelli CA; Conigliaro J J Med Chem; 1986 Oct; 29(10):2117-9. PubMed ID: 3761327 [TBL] [Abstract][Full Text] [Related]
35. Purine biosynthesis in archaea: variations on a theme. Brown AM; Hoopes SL; White RH; Sarisky CA Biol Direct; 2011 Dec; 6():63. PubMed ID: 22168471 [TBL] [Abstract][Full Text] [Related]
36. Investigation of the mechanism of phosphoribosylamine transfer from glutamine phosphoribosylpyrophosphate amidotransferase to glycinamide ribonucleotide synthetase. Rudolph J; Stubbe J Biochemistry; 1995 Feb; 34(7):2241-50. PubMed ID: 7532005 [TBL] [Abstract][Full Text] [Related]
37. Mammalian glycinamide ribonucleotide transformylase: purification and some properties. Caperelli CA Biochemistry; 1985 Mar; 24(6):1316-20. PubMed ID: 3986180 [TBL] [Abstract][Full Text] [Related]
38. X-ray crystal structure of glycinamide ribonucleotide synthetase from Escherichia coli. Wang W; Kappock TJ; Stubbe J; Ealick SE Biochemistry; 1998 Nov; 37(45):15647-62. PubMed ID: 9843369 [TBL] [Abstract][Full Text] [Related]
39. Towards structure-based drug design: crystal structure of a multisubstrate adduct complex of glycinamide ribonucleotide transformylase at 1.96 A resolution. Klein C; Chen P; Arevalo JH; Stura EA; Marolewski A; Warren MS; Benkovic SJ; Wilson IA J Mol Biol; 1995 May; 249(1):153-75. PubMed ID: 7776369 [TBL] [Abstract][Full Text] [Related]
40. Synthesis and biological evaluation of N-[4-[5-(2,4-diamino-6-oxo-1,6-dihydropyrimidin-5-yl)-2-(2,2,2-trifluoroacetyl)pentyl]benzoyl]-L-glutamic acid as a potential inhibitor of GAR Tfase and the de novo purine biosynthetic pathway. Cheng H; Hwang I; Chong Y; Tavassoli A; Webb ME; Zhang Y; Wilson IA; Benkovic SJ; Boger DL Bioorg Med Chem; 2005 May; 13(10):3593-9. PubMed ID: 15848772 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]