These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 15778451)
1. Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer. Wang D; Sun X; Bohn LM; Sadée W Mol Pharmacol; 2005 Jun; 67(6):2173-84. PubMed ID: 15778451 [TBL] [Abstract][Full Text] [Related]
2. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Ramsay D; Kellett E; McVey M; Rees S; Milligan G Biochem J; 2002 Jul; 365(Pt 2):429-40. PubMed ID: 11971762 [TBL] [Abstract][Full Text] [Related]
3. Monitoring Opioid Receptor Interaction in Living Cells by Bioluminescence Resonance Energy Transfer (BRET). Baiula M Methods Mol Biol; 2021; 2201():35-43. PubMed ID: 32975787 [TBL] [Abstract][Full Text] [Related]
4. Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta -opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. McVey M; Ramsay D; Kellett E; Rees S; Wilson S; Pope AJ; Milligan G J Biol Chem; 2001 Apr; 276(17):14092-9. PubMed ID: 11278447 [TBL] [Abstract][Full Text] [Related]
5. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins. Bedini A Methods Mol Biol; 2021; 2201():45-58. PubMed ID: 32975788 [TBL] [Abstract][Full Text] [Related]
6. Biochemical and biophysical characterization of serotonin 5-HT2C receptor homodimers on the plasma membrane of living cells. Herrick-Davis K; Grinde E; Mazurkiewicz JE Biochemistry; 2004 Nov; 43(44):13963-71. PubMed ID: 15518545 [TBL] [Abstract][Full Text] [Related]
7. Comparison of [Dmt1]DALDA and DAMGO in binding and G protein activation at mu, delta, and kappa opioid receptors. Zhao GM; Qian X; Schiller PW; Szeto HH J Pharmacol Exp Ther; 2003 Dec; 307(3):947-54. PubMed ID: 14534366 [TBL] [Abstract][Full Text] [Related]
8. Monitoring opioid receptor dimerization in living cells by bioluminescence resonance energy transfer (BRET). Baiula M Methods Mol Biol; 2015; 1230():105-13. PubMed ID: 25293319 [TBL] [Abstract][Full Text] [Related]
9. Hetero-oligomerization and specificity changes of G protein-coupled purinergic receptors: novel insight into diversification of signal transduction. Suzuki T; Namba K; Mizuno N; Nakata H Methods Enzymol; 2013; 521():239-57. PubMed ID: 23351743 [TBL] [Abstract][Full Text] [Related]
10. Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. Pfeiffer M; Koch T; Schröder H; Laugsch M; Höllt V; Schulz S J Biol Chem; 2002 May; 277(22):19762-72. PubMed ID: 11896051 [TBL] [Abstract][Full Text] [Related]
11. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. Ayoub MA; Couturier C; Lucas-Meunier E; Angers S; Fossier P; Bouvier M; Jockers R J Biol Chem; 2002 Jun; 277(24):21522-8. PubMed ID: 11940583 [TBL] [Abstract][Full Text] [Related]
12. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. James JR; Oliveira MI; Carmo AM; Iaboni A; Davis SJ Nat Methods; 2006 Dec; 3(12):1001-6. PubMed ID: 17086179 [TBL] [Abstract][Full Text] [Related]
13. Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. Mercier JF; Salahpour A; Angers S; Breit A; Bouvier M J Biol Chem; 2002 Nov; 277(47):44925-31. PubMed ID: 12244098 [TBL] [Abstract][Full Text] [Related]
14. Quantitative analysis of multiple kappa-opioid receptors by selective and nonselective ligand binding in guinea pig spinal cord: resolution of high and low affinity states of the kappa 2 receptors by a computerized model-fitting technique. Tiberi M; Magnan J Mol Pharmacol; 1990 May; 37(5):694-703. PubMed ID: 2160061 [TBL] [Abstract][Full Text] [Related]
15. Trafficking of preassembled opioid mu-delta heterooligomer-Gz signaling complexes to the plasma membrane: coregulation by agonists. Hasbi A; Nguyen T; Fan T; Cheng R; Rashid A; Alijaniaram M; Rasenick MM; O'Dowd BF; George SR Biochemistry; 2007 Nov; 46(45):12997-3009. PubMed ID: 17941650 [TBL] [Abstract][Full Text] [Related]
16. Multiple agonist-affinity states of opioid receptors: regulation of binding by guanyl nucleotides in guinea pig cortical, NG108-15, and 7315c cell membranes. Werling LL; Puttfarcken PS; Cox BM Mol Pharmacol; 1988 Apr; 33(4):423-31. PubMed ID: 2833686 [TBL] [Abstract][Full Text] [Related]
18. Bioluminescence resonance energy transfer (BRET) to detect the interactions between kappa opioid receptor and non visual arrestins. Bedini A Methods Mol Biol; 2015; 1230():115-28. PubMed ID: 25293320 [TBL] [Abstract][Full Text] [Related]
19. Comparative pharmacological properties and functional coupling of mu and delta opioid receptor sites in human neuroblastoma SH-SY5Y cells. Kazmi SM; Mishra RK Mol Pharmacol; 1987 Jul; 32(1):109-18. PubMed ID: 3037297 [TBL] [Abstract][Full Text] [Related]
20. Delta and mu opioid receptors from the brain of a urodele amphibian, the rough-skinned newt Taricha granulosa: cloning, heterologous expression, and pharmacological characterization. Bradford CS; Walthers EA; Stanley DJ; Baugh MM; Moore FL Gen Comp Endocrinol; 2006 May; 146(3):275-90. PubMed ID: 16375901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]