These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1577860)

  • 41. Biosynthesis, assembly and secretion of coagulation factor VIII.
    Kaufman RJ; Pipe SW; Tagliavacca L; Swaroop M; Moussalli M
    Blood Coagul Fibrinolysis; 1997 Dec; 8 Suppl 2():S3-14. PubMed ID: 9607108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunoglobulin heavy chain and binding protein complexes are dissociated in vivo by light chain addition.
    Hendershot LM
    J Cell Biol; 1990 Sep; 111(3):829-37. PubMed ID: 2118144
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of inhibiting oligosaccharide trimming by 1-deoxynojirimycin on the nicotinic acetylcholine receptor.
    Smith MM; Schlesinger S; Lindstrom J; Merlie JP
    J Biol Chem; 1986 Nov; 261(31):14825-32. PubMed ID: 2945821
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution.
    Dellisanti CD; Yao Y; Stroud JC; Wang ZZ; Chen L
    Nat Neurosci; 2007 Aug; 10(8):953-62. PubMed ID: 17643119
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly.
    Verrall S; Hall ZW
    Cell; 1992 Jan; 68(1):23-31. PubMed ID: 1370654
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The variable domain of nonassembled Ig light chains determines both their half-life and binding to the chaperone BiP.
    Skowronek MH; Hendershot LM; Haas IG
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1574-8. PubMed ID: 9465057
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced binding to the molecular chaperone BiP slows thyroglobulin export from the endoplasmic reticulum.
    Muresan Z; Arvan P
    Mol Endocrinol; 1998 Mar; 12(3):458-67. PubMed ID: 9514162
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Membrane tethering enables an extracellular domain of the acetylcholine receptor alpha subunit to form a heterodimeric ligand-binding site.
    Wang ZZ; Hardy SF; Hall ZW
    J Cell Biol; 1996 Nov; 135(3):809-17. PubMed ID: 8909552
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of early events in acetylcholine receptor assembly.
    Paulson HL; Ross AF; Green WN; Claudio T
    J Cell Biol; 1991 Jun; 113(6):1371-84. PubMed ID: 2045417
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic variants of C2 muscle cells that are defective in synthesis of the alpha-subunit of the acetylcholine receptor.
    Black R; Goldman D; Hochschwender S; Lindstrom J; Hall ZW
    J Cell Biol; 1987 Sep; 105(3):1329-36. PubMed ID: 3654754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Induction of phosphorylation and cell surface redistribution of acetylcholine receptors by phorbol ester and carbamylcholine in cultured chick muscle cells.
    Ross A; Rapuano M; Prives J
    J Cell Biol; 1988 Sep; 107(3):1139-45. PubMed ID: 3417778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assembly in vivo of mouse muscle acetylcholine receptor: identification of an alpha subunit species that may be an assembly intermediate.
    Merlie JP; Lindstrom J
    Cell; 1983 Oct; 34(3):747-57. PubMed ID: 6627392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assembly of Torpedo acetylcholine receptors in Xenopus oocytes.
    Saedi MS; Conroy WG; Lindstrom J
    J Cell Biol; 1991 Mar; 112(5):1007-15. PubMed ID: 1999453
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acetylcholine receptor assembly: subunit folding and oligomerization occur sequentially.
    Green WN; Claudio T
    Cell; 1993 Jul; 74(1):57-69. PubMed ID: 8334706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Altered glycosylation sites of the delta subunit of the acetylcholine receptor (AChR) reduce alpha delta association and receptor assembly.
    Ramanathan VK; Hall ZW
    J Biol Chem; 1999 Jul; 274(29):20513-20. PubMed ID: 10400680
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transient aggregation of major histocompatibility complex class II chains during assembly in normal spleen cells.
    Marks MS; Germain RN; Bonifacino JS
    J Biol Chem; 1995 May; 270(18):10475-81. PubMed ID: 7737982
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Binding of BiP to the processing enzyme lymphoma proprotein convertase prevents aggregation, but slows down maturation.
    Creemers JW; van de Loo JW; Plets E; Hendershot LM; Van De Ven WJ
    J Biol Chem; 2000 Dec; 275(49):38842-7. PubMed ID: 10964928
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release.
    Knittler MR; Haas IG
    EMBO J; 1992 Apr; 11(4):1573-81. PubMed ID: 1563355
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clusters of 43-kDa protein are absent from genetic variants of C2 muscle cells with reduced acetylcholine receptor expression.
    LaRochelle WJ; Ralston E; Forsayeth JR; Froehner SC; Hall ZW
    Dev Biol; 1989 Mar; 132(1):130-8. PubMed ID: 2645181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression of fusion proteins of the nicotinic acetylcholine receptor from mammalian muscle identifies the membrane-spanning regions in the alpha and delta subunits.
    Chavez RA; Hall ZW
    J Cell Biol; 1992 Jan; 116(2):385-93. PubMed ID: 1730761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.