These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 15778711)
1. Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Tunik E; Frey SH; Grafton ST Nat Neurosci; 2005 Apr; 8(4):505-11. PubMed ID: 15778711 [TBL] [Abstract][Full Text] [Related]
2. Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions. Vesia M; Bolton DA; Mochizuki G; Staines WR Neuropsychologia; 2013 Feb; 51(3):410-7. PubMed ID: 23206539 [TBL] [Abstract][Full Text] [Related]
3. Grasping with the Press of a Button: Grasp-selective Responses in the Human Anterior Intraparietal Sulcus Depend on Nonarbitrary Causal Relationships between Hand Movements and End-effector Actions. Frey SH; Hansen M; Marchal N J Cogn Neurosci; 2015 Jun; 27(6):1146-60. PubMed ID: 25436672 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of the anterior intraparietal area and the dorsal premotor cortex interfere with arbitrary visuo-motor mapping. Taubert M; Dafotakis M; Sparing R; Eickhoff S; Leuchte S; Fink GR; Nowak DA Clin Neurophysiol; 2010 Mar; 121(3):408-13. PubMed ID: 20004613 [TBL] [Abstract][Full Text] [Related]
5. The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation. Rice NJ; Tunik E; Grafton ST J Neurosci; 2006 Aug; 26(31):8176-82. PubMed ID: 16885231 [TBL] [Abstract][Full Text] [Related]
6. Hierarchical organization of parietofrontal circuits during goal-directed action. Verhagen L; Dijkerman HC; Medendorp WP; Toni I J Neurosci; 2013 Apr; 33(15):6492-503. PubMed ID: 23575847 [TBL] [Abstract][Full Text] [Related]
7. Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size. Glover S; Miall RC; Rushworth MF J Cogn Neurosci; 2005 Jan; 17(1):124-36. PubMed ID: 15701244 [TBL] [Abstract][Full Text] [Related]
8. Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviors. Gardner EP; Babu KS; Reitzen SD; Ghosh S; Brown AS; Chen J; Hall AL; Herzlinger MD; Kohlenstein JB; Ro JY J Neurophysiol; 2007 Jan; 97(1):387-406. PubMed ID: 16971679 [TBL] [Abstract][Full Text] [Related]
9. Differential recruitment of anterior intraparietal sulcus and superior parietal lobule during visually guided grasping revealed by electrical neuroimaging. Tunik E; Ortigue S; Adamovich SV; Grafton ST J Neurosci; 2008 Dec; 28(50):13615-20. PubMed ID: 19074035 [TBL] [Abstract][Full Text] [Related]
10. Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions. Vesia M; Barnett-Cowan M; Elahi B; Jegatheeswaran G; Isayama R; Neva JL; Davare M; Staines WR; Culham JC; Chen R Cortex; 2017 Jul; 92():175-186. PubMed ID: 28499145 [TBL] [Abstract][Full Text] [Related]
11. The right anterior intraparietal sulcus is critical for bimanual grasping: a TMS study. Le A; Vesia M; Yan X; Niemeier M; Crawford JD Cereb Cortex; 2014 Oct; 24(10):2591-603. PubMed ID: 23645719 [TBL] [Abstract][Full Text] [Related]
12. Disruption of activity in the ventral premotor but not the anterior intraparietal area interferes with on-line correction to a haptic perturbation during grasping. Schettino LF; Adamovich SV; Bagce H; Yarossi M; Tunik E J Neurosci; 2015 Feb; 35(5):2112-7. PubMed ID: 25653367 [TBL] [Abstract][Full Text] [Related]
13. Probing the reaching-grasping network in humans through multivoxel pattern decoding. Di Bono MG; Begliomini C; Castiello U; Zorzi M Brain Behav; 2015 Nov; 5(11):e00412. PubMed ID: 26664793 [TBL] [Abstract][Full Text] [Related]
14. Evidence for context sensitivity of grasp representations in human parietal and premotor cortices. Marangon M; Jacobs S; Frey SH J Neurophysiol; 2011 May; 105(5):2536-46. PubMed ID: 21367998 [TBL] [Abstract][Full Text] [Related]
15. Cortical dynamics of sensorimotor integration during grasp planning. Verhagen L; Dijkerman HC; Medendorp WP; Toni I J Neurosci; 2012 Mar; 32(13):4508-19. PubMed ID: 22457498 [TBL] [Abstract][Full Text] [Related]
16. On-line grasp control is mediated by the contralateral hemisphere. Rice NJ; Tunik E; Cross ES; Grafton ST Brain Res; 2007 Oct; 1175():76-84. PubMed ID: 17888413 [TBL] [Abstract][Full Text] [Related]
17. A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements. Reichenbach A; Thielscher A; Peer A; Bülthoff HH; Bresciani JP Neuroimage; 2014 Jan; 84():615-25. PubMed ID: 24060316 [TBL] [Abstract][Full Text] [Related]
18. Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. Cavina-Pratesi C; Monaco S; Fattori P; Galletti C; McAdam TD; Quinlan DJ; Goodale MA; Culham JC J Neurosci; 2010 Aug; 30(31):10306-23. PubMed ID: 20685975 [TBL] [Abstract][Full Text] [Related]
19. From three-dimensional space vision to prehensile hand movements: the lateral intraparietal area links the area V3A and the anterior intraparietal area in macaques. Nakamura H; Kuroda T; Wakita M; Kusunoki M; Kato A; Mikami A; Sakata H; Itoh K J Neurosci; 2001 Oct; 21(20):8174-87. PubMed ID: 11588190 [TBL] [Abstract][Full Text] [Related]
20. Evidence for both reaching and grasping activity in the medial parieto-occipital cortex of the macaque. Fattori P; Breveglieri R; Amoroso K; Galletti C Eur J Neurosci; 2004 Nov; 20(9):2457-66. PubMed ID: 15525286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]