BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

781 related articles for article (PubMed ID: 15778871)

  • 41. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon.
    Lynch HA; Johannessen W; Wu JP; Jawa A; Elliott DM
    J Biomech Eng; 2003 Oct; 125(5):726-31. PubMed ID: 14618932
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aging, vertebral density, and disc degeneration alter the tensile stress-strain characteristics of the human anterior longitudinal ligament.
    Neumann P; Ekström LA; Keller TS; Perry L; Hansson TH
    J Orthop Res; 1994 Jan; 12(1):103-12. PubMed ID: 8113932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities.
    McAfee PC; Cunningham BW; Hayes V; Sidiqi F; Dabbah M; Sefter JC; Hu N; Beatson H
    Spine (Phila Pa 1976); 2006 Sep; 31(19 Suppl):S152-60. PubMed ID: 16946633
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anisotropic ion diffusivity in intervertebral disc: an electrical conductivity approach.
    Jackson A; Yao H; Brown MD; Yong Gu W
    Spine (Phila Pa 1976); 2006 Nov; 31(24):2783-9. PubMed ID: 17108829
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Caudal fin in the white shark, Carcharodon carcharias (Lamnidae): a dynamic propeller for fast, efficient swimming.
    Lingham-Soliar T
    J Morphol; 2005 May; 264(2):233-52. PubMed ID: 15795938
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A model of stress and strain in the interosseous ligament of the forearm based on fiber network theory.
    Pfaeffle HJ; Fischer KJ; Srinivasa A; Manson T; Woo SL; Tomaino M
    J Biomech Eng; 2006 Oct; 128(5):725-32. PubMed ID: 16995759
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of orthogonal overload on human vertebral trabecular bone mechanical properties.
    Badiei A; Bottema MJ; Fazzalari NL
    J Bone Miner Res; 2007 Nov; 22(11):1690-9. PubMed ID: 17620053
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elastic fibers in the anulus fibrosus of the dog intervertebral disc.
    Johnson EF; Caldwell RW; Berryman HE; Miller A; Chetty K
    Acta Anat (Basel); 1984; 118(4):238-42. PubMed ID: 6720244
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Prolapsed disk and constitutional disk flexibility].
    Weh L; Petau C
    Z Orthop Ihre Grenzgeb; 1994; 132(4):312-5. PubMed ID: 7941691
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments.
    Bass CR; Planchak CJ; Salzar RS; Lucas SR; Rafaels KA; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jul; 32(16):E436-42. PubMed ID: 17632382
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling the tensile behavior of human Achilles tendon.
    Lewis G; Shaw KM
    Biomed Mater Eng; 1997; 7(4):231-44. PubMed ID: 9408575
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs.
    Kemper AR; McNally C; Duma SM
    Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tensile and viscoelastic properties of human patellar tendon.
    Johnson GA; Tramaglini DM; Levine RE; Ohno K; Choi NY; Woo SL
    J Orthop Res; 1994 Nov; 12(6):796-803. PubMed ID: 7983555
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strain transfer in the annulus fibrosus under applied flexion.
    Desrochers J; Duncan NA
    J Biomech; 2010 Aug; 43(11):2141-8. PubMed ID: 20478561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging.
    Iatridis JC; Setton LA; Weidenbaum M; Mow VC
    J Orthop Res; 1997 Mar; 15(2):318-22. PubMed ID: 9167638
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical properties of stapedial tendon in human middle ear.
    Cheng T; Gan RZ
    J Biomech Eng; 2007 Dec; 129(6):913-18. PubMed ID: 18067396
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomechanical properties and collagen fiber orientation of temporomandibular joint discs in dogs: 2. Tensile mechanical properties of the discs.
    Teng S; Xu Y; Cheng M; Li Y
    J Craniomandib Disord; 1991; 5(2):107-14. PubMed ID: 1812136
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exposure of the nucleus pulposus to the outside of the anulus fibrosus induces nerve injury and regeneration of the afferent fibers innervating the lumbar intervertebral discs in rats.
    Inoue G; Ohtori S; Aoki Y; Ozawa T; Doya H; Saito T; Ito T; Akazawa T; Moriya H; Takahashi K
    Spine (Phila Pa 1976); 2006 Jun; 31(13):1433-8. PubMed ID: 16741451
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The effect of various nucleotomy techniques on biomechanical properties of the intervertebral disk].
    Zöllner J; Rosendahl T; Herbsthofer B; Humke T; Eysel P
    Z Orthop Ihre Grenzgeb; 1999; 137(3):206-10. PubMed ID: 10441823
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Studies on the topographic architecture of the annulus fibrosus in developmental and degenerative processes in the lumbar intervertebral disc in man].
    Motoe T
    Nihon Seikeigeka Gakkai Zasshi; 1986 May; 60(5):495-509. PubMed ID: 3746048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.