These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

786 related articles for article (PubMed ID: 15778871)

  • 61. Spatially varying material properties of the rat caudal intervertebral disc.
    Ho MM; Kelly TA; Guo XE; Ateshian GA; Hung CT
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E486-93. PubMed ID: 16816748
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging.
    O'Connell GD; Johannessen W; Vresilovic EJ; Elliott DM
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2860-8. PubMed ID: 18246009
    [TBL] [Abstract][Full Text] [Related]  

  • 63. T2 relaxation times of intervertebral disc tissue correlated with water content and proteoglycan content.
    Marinelli NL; Haughton VM; Muñoz A; Anderson PA
    Spine (Phila Pa 1976); 2009 Mar; 34(5):520-4. PubMed ID: 19247172
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Viscoelastic stresses on anisotropic annulus fibrosus of lumbar disk under compression, rotation and flexion in manual treatment.
    Chaudhry H; Ji Z; Shenoy N; Findley T
    J Bodyw Mov Ther; 2009 Apr; 13(2):182-91. PubMed ID: 19329054
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cell polarity in the anulus of the human intervertebral disc: morphologic, immunocytochemical, and molecular evidence.
    Gruber HE; Ingram J; Hoelscher GL; Norton HJ; Hanley EN
    Spine (Phila Pa 1976); 2007 May; 32(12):1287-94. PubMed ID: 17515816
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Viscoelastic properties of human tympanic membrane.
    Cheng T; Dai C; Gan RZ
    Ann Biomed Eng; 2007 Feb; 35(2):305-14. PubMed ID: 17160465
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mechanical behavior of chemically treated ostrich pericardium subjected to uniaxial tensile testing: influence of the suture.
    García Páez JM; Carrera A; Herrero EJ; Millán I; Rocha A; Cordón A; Téllez G; Maestro M; Calero P; Castillo-Olivares JL
    J Biomed Mater Res; 2002 Oct; 62(1):73-81. PubMed ID: 12124788
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.
    Groth KM; Granata KP
    J Biomech Eng; 2008 Jun; 130(3):031005. PubMed ID: 18532854
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Tensile mechanics of mandibular condylar cartilage].
    Kang H; Bao G; Dong Y; Yi X; Chao Y; Chen M
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2000 Apr; 18(2):85-7. PubMed ID: 12539336
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Material properties of the human lumbar facet joint capsule.
    Little JS; Khalsa PS
    J Biomech Eng; 2005 Feb; 127(1):15-24. PubMed ID: 15868784
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Creep associated changes in intervertebral disc bulging obtained with a laser scanning device.
    Heuer F; Schmitt H; Schmidt H; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):737-44. PubMed ID: 17561321
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus.
    Schmidt H; Heuer F; Simon U; Kettler A; Rohlmann A; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2006 May; 21(4):337-44. PubMed ID: 16439042
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions.
    Elliott DM; Setton LA
    J Biomech Eng; 2001 Jun; 123(3):256-63. PubMed ID: 11476369
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Relationships between viscoelastic properties of lumbar intervertebral disc and degeneration grade assessed by MRI.
    Campana S; Charpail E; de Guise JA; Rillardon L; Skalli W; Mitton D
    J Mech Behav Biomed Mater; 2011 May; 4(4):593-9. PubMed ID: 21396608
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The ultra-structural organization of the elastic network in the intra- and inter-lamellar matrix of the intervertebral disc.
    Tavakoli J; Elliott DM; Costi JJ
    Acta Biomater; 2017 Aug; 58():269-277. PubMed ID: 28526629
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Observations on fiber-forming collagens in the anulus fibrosus.
    Schollmeier G; Lahr-Eigen R; Lewandrowski KU
    Spine (Phila Pa 1976); 2000 Nov; 25(21):2736-41. PubMed ID: 11064517
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Uniaxial tensile testing of canine annulus fibrosus tissue under changing salt concentrations.
    Huyghe JM; Drost MR
    Biorheology; 2004; 41(3-4):255-61. PubMed ID: 15299258
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials.
    Dyer SR; Lassila LV; Jokinen M; Vallittu PK
    J Prosthet Dent; 2005 Sep; 94(3):219-26. PubMed ID: 16126074
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mechanical behavior of annulus fibrosus: a microstructural model of fibers reorientation.
    Ambard D; Cherblanc F
    Ann Biomed Eng; 2009 Nov; 37(11):2256-65. PubMed ID: 19609835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.