These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 15778964)
1. Molecular dynamics simulation of the aggregation of the core-recognition motif of the islet amyloid polypeptide in explicit water. Colombo G; Daidone I; Gazit E; Amadei A; Di Nola A Proteins; 2005 May; 59(3):519-27. PubMed ID: 15778964 [TBL] [Abstract][Full Text] [Related]
2. Probing amyloid fibril formation of the NFGAIL peptide by computer simulations. Melquiond A; Gelly JC; Mousseau N; Derreumaux P J Chem Phys; 2007 Feb; 126(6):065101. PubMed ID: 17313247 [TBL] [Abstract][Full Text] [Related]
3. Assembly dynamics of two-beta sheets revealed by molecular dynamics simulations. Xu W; Ping J; Li W; Mu Y J Chem Phys; 2009 Apr; 130(16):164709. PubMed ID: 19405618 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II. Legge FS; Treutlein H; Howlett GJ; Yarovsky I Biophys Chem; 2007 Nov; 130(3):102-13. PubMed ID: 17825978 [TBL] [Abstract][Full Text] [Related]
5. Beta-hairpin folding by a model amyloid peptide in solution and at an interface. Knecht V J Phys Chem B; 2008 Aug; 112(31):9476-83. PubMed ID: 18593146 [TBL] [Abstract][Full Text] [Related]
6. The molecular dynamics of assembly of the ubiquitous aortic medial amyloidal medin fragment. Gazit E; della Bruna P; Pieraccini S; Colombo G J Mol Graph Model; 2007 Mar; 25(6):903-11. PubMed ID: 17035055 [TBL] [Abstract][Full Text] [Related]
7. Computational studies of the structure, dynamics and native content of amyloid-like fibrils of ribonuclease A. Colombo G; Meli M; De Simone A Proteins; 2008 Feb; 70(3):863-72. PubMed ID: 17803210 [TBL] [Abstract][Full Text] [Related]
8. A molecular dynamics study of the interaction of D-peptide amyloid inhibitors with their target sequence reveals a potential inhibitory pharmacophore conformation. Esteras-Chopo A; Morra G; Moroni E; Serrano L; Lopez de la Paz M; Colombo G J Mol Biol; 2008 Oct; 383(1):266-80. PubMed ID: 18703072 [TBL] [Abstract][Full Text] [Related]
10. The minimal amyloid-forming fragment of the islet amyloid polypeptide is a glycolipid-binding domain. Levy M; Garmy N; Gazit E; Fantini J FEBS J; 2006 Dec; 273(24):5724-35. PubMed ID: 17212787 [TBL] [Abstract][Full Text] [Related]
11. Binding modes of thioflavin-T to the single-layer beta-sheet of the peptide self-assembly mimics. Wu C; Biancalana M; Koide S; Shea JE J Mol Biol; 2009 Dec; 394(4):627-33. PubMed ID: 19799914 [TBL] [Abstract][Full Text] [Related]
12. Computational approaches to fibril structure and formation. Hall CK; Wagoner VA Methods Enzymol; 2006; 412():338-65. PubMed ID: 17046667 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool. Gazit E FEBS J; 2005 Dec; 272(23):5971-8. PubMed ID: 16302962 [TBL] [Abstract][Full Text] [Related]
14. Peptide sequence and amyloid formation; molecular simulations and experimental study of a human islet amyloid polypeptide fragment and its analogs. Zanuy D; Porat Y; Gazit E; Nussinov R Structure; 2004 Mar; 12(3):439-55. PubMed ID: 15016360 [TBL] [Abstract][Full Text] [Related]
15. Interpreting the aggregation kinetics of amyloid peptides. Pellarin R; Caflisch A J Mol Biol; 2006 Jul; 360(4):882-92. PubMed ID: 16797587 [TBL] [Abstract][Full Text] [Related]