BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 15779749)

  • 1. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products.
    Latch DE; Packer JL; Stender BL; VanOverbeke J; Arnold WA; McNeill K
    Environ Toxicol Chem; 2005 Mar; 24(3):517-25. PubMed ID: 15779749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dissolved organic matter on phototransformation rates and dioxin products of triclosan and 2'-HO-BDE-28 in estuarine water.
    Zhang YN; Xie Q; Sun G; Yang K; Song S; Chen J; Zhou C; Li Y
    Environ Sci Process Impacts; 2016 Sep; 18(9):1177-84. PubMed ID: 27383795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and theoretical insights into the involvement of radicals in triclosan phototransformation.
    Kliegman S; Eustis SN; Arnold WA; McNeill K
    Environ Sci Technol; 2013 Jul; 47(13):6756-63. PubMed ID: 23282071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine.
    Batista APS; Teixeira ACSC; Cooper WJ; Cottrell BA
    Water Res; 2016 Apr; 93():20-29. PubMed ID: 26878479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aquatic photochemistry of chlorinated triclosan derivatives: potential source of polychlorodibenzo-p-dioxins.
    Buth JM; Grandbois M; Vikesland PJ; McNeill K; Arnold WA
    Environ Toxicol Chem; 2009 Dec; 28(12):2555-63. PubMed ID: 19908930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions.
    Ding J; Su M; Wu C; Lin K
    Chemosphere; 2015 Aug; 133():41-6. PubMed ID: 25880455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of OH radical reactions with dibenzo-p-dioxin and selected chlorinated dibenzo-p-dioxins.
    Taylor PH; Yamada T; Neuforth A
    Chemosphere; 2005 Jan; 58(3):243-52. PubMed ID: 15581927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical behavior of carbon nanotubes in natural waters: reactive oxygen species production and effects on •OH generation by Suwannee River fulvic acid, nitrate, and Fe (III).
    Zhou L; Zhang Y; Wang Q; Ferronato C; Yang X; Chovelon JM
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19520-8. PubMed ID: 27388595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME.
    Lores M; Llompart M; Sanchez-Prado L; Garcia-Jares C; Cela R
    Anal Bioanal Chem; 2005 Mar; 381(6):1294-8. PubMed ID: 15702305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further research on the photo-SPME of triclosan.
    Sánchez-Prado L; Llompart M; Lores M; Fernández-Alvarez M; García-Jares C; Cela R
    Anal Bioanal Chem; 2006 Apr; 384(7-8):1548-57. PubMed ID: 16520937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical conversion pathways and kinetic modeling for the OH-initiated reaction of triclosan in gas-phase.
    Zhang X; Zhang C; Sun X; Kang L; Zhao Y
    Int J Mol Sci; 2015 Apr; 16(4):8128-41. PubMed ID: 25867482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photolytic degradation of triclosan in freshwater and seawater.
    Aranami K; Readman JW
    Chemosphere; 2007 Jan; 66(6):1052-6. PubMed ID: 16930676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction.
    Sanchez-Prado L; Llompart M; Lores M; García-Jares C; Bayona JM; Cela R
    Chemosphere; 2006 Nov; 65(8):1338-47. PubMed ID: 16735047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of triclosan in the presence of p-aminobenzoic acid under simulated sunlight irradiation.
    Zhai P; Chen X; Dong W; Li H; Chovelon JM
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):558-567. PubMed ID: 27734316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosensitized degradation of caffeine: role of fulvic acids and nitrate.
    Jacobs LE; Weavers LK; Houtz EF; Chin YP
    Chemosphere; 2012 Jan; 86(2):124-9. PubMed ID: 22055309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Faster photodegradation rate and higher dioxin yield of triclosan induced by cationic surfactant CTAB.
    Qiao X; Zheng X; Xie Q; Yang X; Xiao J; Xue W; Chen J
    J Hazard Mater; 2014 Jun; 275():210-4. PubMed ID: 24857904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochemical fate of atorvastatin (lipitor) in simulated natural waters.
    Razavi B; Ben Abdelmelek S; Song W; O'Shea KE; Cooper WJ
    Water Res; 2011 Jan; 45(2):625-31. PubMed ID: 20801479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical fate of pharmaceuticals in the environment: cimetidine and ranitidine.
    Latch DE; Stender BL; Packer JL; Arnold WA; McNeill K
    Environ Sci Technol; 2003 Aug; 37(15):3342-50. PubMed ID: 12966980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triclosan reactivity in chloraminated waters.
    Greyshock AE; Vikesland PJ
    Environ Sci Technol; 2006 Apr; 40(8):2615-22. PubMed ID: 16683600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanism of photolysis and TiO2 photocatalysis of triclosan.
    Son HS; Ko G; Zoh KD
    J Hazard Mater; 2009 Jul; 166(2-3):954-60. PubMed ID: 19136205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.