These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15779826)

  • 1. The variable C-terminus of 14-3-3 proteins mediates isoform-specific interaction with sucrose-phosphate synthase in the yeast two-hybrid system.
    Börnke F
    J Plant Physiol; 2005 Feb; 162(2):161-8. PubMed ID: 15779826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutation of UDP-glucose binding motif residues lead to increased affinity for ADP-glucose in sugarcane sucrose phosphate synthase.
    Kurniah NI; Sawitri WD; Rohman MS; Nugraha Y; Hase T; Sugiharto B
    Mol Biol Rep; 2021 Feb; 48(2):1697-1706. PubMed ID: 33528727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity of ε and non-ε isoforms of arabidopsis 14-3-3 proteins towards the H+-ATPase and other targets.
    Pallucca R; Visconti S; Camoni L; Cesareni G; Melino S; Panni S; Torreri P; Aducci P
    PLoS One; 2014; 9(6):e90764. PubMed ID: 24603559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of sucrose phosphate synthase from Halothermothrix orenii reveals its mechanism of action and binding mode.
    Chua TK; Bujnicki JM; Tan TC; Huynh F; Patel BK; Sivaraman J
    Plant Cell; 2008 Apr; 20(4):1059-72. PubMed ID: 18424616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins.
    Toroser D; Athwal GS; Huber SC
    FEBS Lett; 1998 Sep; 435(1):110-4. PubMed ID: 9755869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation.
    Maloney VJ; Park JY; Unda F; Mansfield SD
    J Exp Bot; 2015 Jul; 66(14):4383-94. PubMed ID: 25873678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the substrate specificity of sucrose-phosphate synthase protein kinase.
    McMichael RW; Kochansky J; Klein RR; Huber SC
    Arch Biochem Biophys; 1995 Aug; 321(1):71-5. PubMed ID: 7639538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphomimetic mutation of a conserved serine residue in Arabidopsis thaliana 14-3-3ω suggests a regulatory role of phosphorylation in dimerization and target interactions.
    Gökirmak T; Denison FC; Laughner BJ; Paul AL; Ferl RJ
    Plant Physiol Biochem; 2015 Dec; 97():296-303. PubMed ID: 26512969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities.
    Toroser D; Huber SC
    Arch Biochem Biophys; 1998 Jul; 355(2):291-300. PubMed ID: 9675040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single amino acid variation in barley 14-3-3 proteins leads to functional isoform specificity in the regulation of nitrate reductase.
    Sinnige MP; Roobeek I; Bunney TD; Visser AJ; Mol JN; de Boer AH
    Plant J; 2005 Dec; 44(6):1001-9. PubMed ID: 16359392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of 14-3-3 Proteins Phosphopeptide-Binding Specificity Using an Affinity-Based Computational Approach.
    Li Z; Tang J; Guo F
    PLoS One; 2016; 11(2):e0147467. PubMed ID: 26828594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity?
    Rosenquist M; Sehnke P; Ferl RJ; Sommarin M; Larsson C
    J Mol Evol; 2000 Nov; 51(5):446-58. PubMed ID: 11080367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tobacco TGA factors differ with respect to interaction with NPR1, activation potential and DNA-binding properties.
    Niggeweg R; Thurow C; Weigel R; Pfitzner U; Gatz C
    Plant Mol Biol; 2000 Mar; 42(5):775-88. PubMed ID: 10809449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the uridine-binding domain of sucrose-phosphate synthase. Expression of a region of the protein that photoaffinity labels with 5-azidouridine diphosphate-glucose.
    Salvucci ME; Klein RR
    Plant Physiol; 1993 Jun; 102(2):529-36. PubMed ID: 8108511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The isoform-specific stretch of hSos1 defines a new Grb2-binding domain.
    Zarich N; Oliva JL; Jorge R; Santos E; Rojas JM
    Oncogene; 2000 Nov; 19(51):5872-83. PubMed ID: 11127818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the major regulatory phosphorylation site in sucrose-phosphate synthase.
    McMichael RW; Klein RR; Salvucci ME; Huber SC
    Arch Biochem Biophys; 1993 Dec; 307(2):248-52. PubMed ID: 8274010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific serine phosphorylation of spinach leaf sucrose-phosphate synthase.
    Huber JL; Huber SC
    Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):877-82. PubMed ID: 1534222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysbindin structural homologue CK1BP is an isoform-selective binding partner of human casein kinase-1.
    Yin H; Laguna KA; Li G; Kuret J
    Biochemistry; 2006 Apr; 45(16):5297-308. PubMed ID: 16618118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of the merlin-I product of the neurofibromatosis type 2 tumour suppressor gene to a novel site in beta-fodrin is regulated by association between merlin domains.
    Neill GW; Crompton MR
    Biochem J; 2001 Sep; 358(Pt 3):727-35. PubMed ID: 11535133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants.
    Lutfiyya LL; Xu N; D'Ordine RL; Morrell JA; Miller PW; Duff SM
    J Plant Physiol; 2007 Jul; 164(7):923-33. PubMed ID: 16876912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.