BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 15779905)

  • 1. Characterization of three essential residues in the conserved ATP-binding region of Epstein-Barr virus thymidine kinase.
    Wu CC; Hsu TY; Chen JY
    Biochemistry; 2005 Mar; 44(12):4785-93. PubMed ID: 15779905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate binding is a prerequisite for stabilisation of mouse thymidine kinase in proliferating fibroblasts.
    Posch M; Hauser C; Seiser C
    J Mol Biol; 2000 Jul; 300(3):493-502. PubMed ID: 10884346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of the conserved nucleoside-binding sites in the Epstein-Barr virus thymidine kinase.
    Wu CC; Chen MC; Chang YR; Hsu TY; Chen JY
    Biochem J; 2004 May; 379(Pt 3):795-803. PubMed ID: 14705959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamic acid 472 and lysine 480 of the sodium pump alpha 1 subunit are essential for activity. Their conservation in pyrophosphatases suggests their involvement in recognition of ATP phosphates.
    Scheiner-Bobis G; Schreiber S
    Biochemistry; 1999 Jul; 38(29):9198-208. PubMed ID: 10413494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct regions of EBV DNase are required for nuclease and DNA binding activities.
    Liu MT; Hsu TY; Lin SF; Seow SV; Liu MY; Chen JY; Yang CS
    Virology; 1998 Mar; 242(1):6-13. PubMed ID: 9501034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect on substrate binding of an alteration at the conserved aspartic acid-162 in herpes simplex virus type 1 thymidine kinase.
    Black ME; Rechtin TM; Drake RR
    J Gen Virol; 1996 Jul; 77 ( Pt 7)():1521-7. PubMed ID: 8757995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fold recognition, homology modeling, docking simulations, kinetics analysis and mutagenesis of ATP/CTP:tRNA nucleotidyltransferase from Methanococcus jannaschii.
    Bujnicki JM; Albert MA; Nelson DJ; Thurlow DL
    Proteins; 2003 Aug; 52(3):349-59. PubMed ID: 12866049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding and self-assembly of herpes simplex virus type 1 thymidine kinase.
    Wurth C; Thomas RM; Folkers G; Scapozza L
    J Mol Biol; 2001 Oct; 313(3):657-70. PubMed ID: 11676546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific mutations of conserved residues in the phosphate-binding loop of the Arabidopsis UMP/CMP kinase alter ATP and UMP binding.
    Zhou L; Thornburg R
    Arch Biochem Biophys; 1998 Oct; 358(2):297-302. PubMed ID: 9784243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the ATP-binding domain of vaccinia virus thymidine kinase.
    Black ME; Hruby DE
    J Biol Chem; 1990 Oct; 265(29):17584-92. PubMed ID: 2211649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of C-terminal deletion mutants of Epstein-Barr virus thymidine kinase.
    Hsu TY; Liu MW; Chang YR; Pai CY; Liu MY; Yang CS; Chen JY
    J Gen Virol; 1996 Aug; 77 ( Pt 8)():1893-9. PubMed ID: 8760441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human mitochondrial thymidine kinase is selectively inhibited by 3'-thiourea derivatives of beta-thymidine: identification of residues crucial for both inhibition and catalytic activity.
    Balzarini J; Van Daele I; Negri A; Solaroli N; Karlsson A; Liekens S; Gago F; Van Calenbergh S
    Mol Pharmacol; 2009 May; 75(5):1127-36. PubMed ID: 19233899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the ATP/GTP binding site of casein kinase II by site-directed mutagenesis.
    Jakobi R; Traugh JA
    Physiol Chem Phys Med NMR; 1995; 27(4):293-301. PubMed ID: 8768785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of lysine 122 and arginine 196 as important functional residues of rat CTP:phosphocholine cytidylyltransferase alpha.
    Helmink BA; Braker JD; Kent C; Friesen JA
    Biochemistry; 2003 May; 42(17):5043-51. PubMed ID: 12718547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated homology modelling and X-ray study of herpes simplex virus I thymidine kinase: a case study.
    Folkers G; Alber F; Amrhein I; Behrends H; Bohner T; Gerber S; Kuonen O; Scapozza L
    J Recept Signal Transduct Res; 1997; 17(1-3):475-94. PubMed ID: 9029509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of position 52 in ERK2 creates a nonproductive binding mode for adenosine 5'-triphosphate.
    Robinson MJ; Harkins PC; Zhang J; Baer R; Haycock JW; Cobb MH; Goldsmith EJ
    Biochemistry; 1996 May; 35(18):5641-6. PubMed ID: 8639522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural studies of thymidine kinases from Bacillus anthracis and Bacillus cereus provide insights into quaternary structure and conformational changes upon substrate binding.
    Kosinska U; Carnrot C; Sandrini MP; Clausen AR; Wang L; Piskur J; Eriksson S; Eklund H
    FEBS J; 2007 Feb; 274(3):727-37. PubMed ID: 17288553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase.
    Stoughton DM; Zapata G; Picone R; Vann WF
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):397-402. PubMed ID: 10510306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the nucleotide binding site within Clostridium symbiosum pyruvate phosphate dikinase by photoaffinity labeling, site-directed mutagenesis, and structural analysis.
    McGuire M; Carroll LJ; Yankie L; Thrall SH; Dunaway-Mariano D; Herzberg O; Jayaram B; Haley BH
    Biochemistry; 1996 Jul; 35(26):8544-52. PubMed ID: 8679615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysine residues 162 and 340 are involved in the catalysis and coenzyme binding of NADP(+)-dependent malic enzyme from pigeon.
    Kuo CC; Tsai LC; Chin TY; Chang GG; Chou WY
    Biochem Biophys Res Commun; 2000 Apr; 270(3):821-5. PubMed ID: 10772909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.