BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 15779909)

  • 1. Multiple loop conformations of peptides predicted by molecular dynamics simulations are compatible with nuclear magnetic resonance.
    Carstens H; Renner C; Milbradt AG; Moroder L; Tavan P
    Biochemistry; 2005 Mar; 44(12):4829-40. PubMed ID: 15779909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photomodulation of conformational states. II. Mono- and bicyclic peptides with (4-aminomethyl)phenylazobenzoic acid as backbone constituent.
    Renner C; Cramer J; Behrendt R; Moroder L
    Biopolymers; 2000 Dec; 54(7):501-14. PubMed ID: 10984402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photomodulation of conformational states. I. Mono- and bicyclic peptides with (4-amino)phenylazobenzoic acid as backbone constituent.
    Renner C; Behrendt R; Spörlein S; Wachtveitl J; Moroder L
    Biopolymers; 2000 Dec; 54(7):489-500. PubMed ID: 10984401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and energy landscape of a photoswitchable peptide: a replica exchange molecular dynamics study.
    Nguyen PH; Mu Y; Stock G
    Proteins; 2005 Aug; 60(3):485-94. PubMed ID: 15977160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation time prediction for a light switchable peptide by molecular dynamics.
    Denschlag R; Schreier WJ; Rieff B; Schrader TE; Koller FO; Moroder L; Zinth W; Tavan P
    Phys Chem Chem Phys; 2010 Jun; 12(23):6204-18. PubMed ID: 20390205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational analysis of furanoid epsilon-sugar amino acid containing cyclic peptides by NMR spectroscopy, molecular dynamics simulation, and X-ray crystallography: evidence for a novel turn structure.
    van Well RM; Marinelli L; Altona C; Erkelens K; Siegal G; van Raaij M; Llamas-Saiz AL; Kessler H; Novellino E; Lavecchia A; van Boom JH; Overhand M
    J Am Chem Soc; 2003 Sep; 125(36):10822-9. PubMed ID: 12952461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass-weighted molecular dynamics simulation of cyclic polypeptides.
    Mao B; Maggiora GM; Chou KC
    Biopolymers; 1991 Aug; 31(9):1077-86. PubMed ID: 1786339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case.
    Papaleo E; Mereghetti P; Fantucci P; Grandori R; De Gioia L
    J Mol Graph Model; 2009; 27(8):889-99. PubMed ID: 19264523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure determination of a flexible cyclic peptide based on NMR and MD simulation 3J-coupling.
    Gattin Z; Zaugg J; van Gunsteren WF
    Chemphyschem; 2010 Mar; 11(4):830-5. PubMed ID: 20162655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulations of the flexibility of a series of synthetic cyclic peptide analogues.
    Thomas A; Roux B; Smith JC
    Biopolymers; 1993 Aug; 33(8):1249-70. PubMed ID: 8364158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energy landscapes of peptides by enhanced conformational sampling.
    Nakajima N; Higo J; Kidera A; Nakamura H
    J Mol Biol; 2000 Feb; 296(1):197-216. PubMed ID: 10656827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photomodulation of conformational states. III. Water-soluble bis-cysteinyl-peptides with (4-aminomethyl) phenylazobenzoic acid as backbone constituent.
    Renner C; Behrendt R; Heim N; Moroder L
    Biopolymers; 2002 May; 63(6):382-93. PubMed ID: 11920439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational interconversion in compstatin probed with molecular dynamics simulations.
    Mallik B; Lambris JD; Morikis D
    Proteins; 2003 Oct; 53(1):130-41. PubMed ID: 12945056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics investigation of cyclic natriuretic peptides: dynamic properties reflect peptide activity.
    Papaleo E; Russo L; Shaikh N; Cipolla L; Fantucci P; De Gioia L
    J Mol Graph Model; 2010 Jun; 28(8):834-41. PubMed ID: 20347361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling protein loops using a phi i + 1, psi i dimer database.
    Sudarsanam S; DuBose RF; March CJ; Srinivasan S
    Protein Sci; 1995 Jul; 4(7):1412-20. PubMed ID: 7670382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible scaling of dihedral angle barriers during molecular dynamics to improve structure prediction of cyclic peptides.
    Riemann RN; Zacharias M
    J Pept Res; 2004 Apr; 63(4):354-64. PubMed ID: 15102053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The beta-turn scaffold of tripeptide containing an azaphenylalanine residue.
    Lee HJ; Park HM; Lee KB
    Biophys Chem; 2007 Jan; 125(1):117-26. PubMed ID: 16890344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of torsion angle molecular dynamics for efficient sampling of protein conformations.
    Chen J; Im W; Brooks CL
    J Comput Chem; 2005 Nov; 26(15):1565-78. PubMed ID: 16145655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photomodulation of conformational states. Synthesis of cyclic peptides with backbone-azobenzene moieties.
    Behrendt R; Schenk M; Musiol HJ; Moroder L
    J Pept Sci; 1999 Nov; 5(11):519-29. PubMed ID: 10587315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.