BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 15779941)

  • 21. Predicting the critical micelle concentrations of aqueous solutions of ionic liquids and other ionic surfactants.
    Preiss U; Jungnickel C; Thöming J; Krossing I; Łuczak J; Diedenhofen M; Klamt A
    Chemistry; 2009 Sep; 15(35):8880-5. PubMed ID: 19630011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water-in-model oil emulsions studied by small-angle neutron scattering: interfacial film thickness and composition.
    Verruto VJ; Kilpatrick PK
    Langmuir; 2008 Nov; 24(22):12807-22. PubMed ID: 18947210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alkanediyl-alpha,omega-bis(dimethylalkylammonium bromide) surfactants 10. Behavior in aqueous solution at concentrations below the critical micellization concentration: an electrical conductivity study.
    Zana R
    J Colloid Interface Sci; 2002 Feb; 246(1):182-90. PubMed ID: 16290399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-step laser mass spectrometry of asphaltenes.
    Pomerantz AE; Hammond MR; Morrow AL; Mullins OC; Zare RN
    J Am Chem Soc; 2008 Jun; 130(23):7216-7. PubMed ID: 18484722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding mechanisms of asphaltene adsorption from organic solvent on mica.
    Natarajan A; Kuznicki N; Harbottle D; Masliyah J; Zeng H; Xu Z
    Langmuir; 2014 Aug; 30(31):9370-7. PubMed ID: 24978299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Small angle neutron scattering (SANS and V-SANS) study of asphaltene aggregates in crude oil.
    Headen TF; Boek ES; Stellbrink J; Scheven UM
    Langmuir; 2009 Jan; 25(1):422-8. PubMed ID: 19063643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic Asphaltene-Stearic Acid Competition at the Oil-Water Interface.
    Sauerer B; Stukan M; Buiting J; Abdallah W; Andersen S
    Langmuir; 2018 May; 34(19):5558-5573. PubMed ID: 29665685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comment on "Determination of the critical micelle concentration of dodecylguanidine monoacetate (dodine)".
    Inoue T; Misono T; Lee S
    J Colloid Interface Sci; 2007 Oct; 314(1):334-6. PubMed ID: 17617418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the connection between the complexation and aggregation thermodynamics of oxyethylene nonionic surfactants.
    Tardajos G; Montoro T; Viñas MH; Palafox MA; Guerrero-Martínez A
    J Phys Chem B; 2008 Dec; 112(49):15691-700. PubMed ID: 19367821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic modeling of asphaltene aggregation.
    Rogel E
    Langmuir; 2004 Feb; 20(3):1003-12. PubMed ID: 15773137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Asphaltene adsorption on quartz sand in the presence of pre-adsorbed water.
    Gonzalez V; Taylor SE
    J Colloid Interface Sci; 2016 Oct; 480():137-145. PubMed ID: 27423129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying the hydrophobic effect. 3. A computer simulation-molecular-thermodynamic model for the micellization of ionic and zwitterionic surfactants in aqueous solution.
    Stephenson BC; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1063-75. PubMed ID: 17266259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of Asphaltenes during Precipitation Investigated by Ultra-Small-Angle X-ray Scattering.
    Yang Y; Chaisoontornyotin W; Hoepfner MP
    Langmuir; 2018 Sep; 34(35):10371-10380. PubMed ID: 30070852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New fluorescence method for the determination of the critical micelle concentration by photosensitive monoazacryptand derivatives.
    Nakahara Y; Kida T; Nakatsuji Y; Akashi M
    Langmuir; 2005 Jul; 21(15):6688-95. PubMed ID: 16008375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Critical Micelle Concentrations of Nonionic Surfactants in Organic Solvents: Approximate Prediction with UNIFAC.
    Flores MV; Voutsas EC; Spiliotis N; Eccleston GM; Bell G; Tassios DP; Halling PJ
    J Colloid Interface Sci; 2001 Aug; 240(1):277-283. PubMed ID: 11446811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new pyrene-based fluorescent probe for the determination of critical micelle concentrations.
    Mohr A; Talbiersky P; Korth HG; Sustmann R; Boese R; Bläser D; Rehage H
    J Phys Chem B; 2007 Nov; 111(45):12985-92. PubMed ID: 17958349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical micelle concentrations and interaction parameters of aqueous binary surfactant:ionic surfactant mixtures.
    Akisada H; Kuwahara J; Noyori K; Kuba R; Shimooka T; Yamada A
    J Colloid Interface Sci; 2005 Aug; 288(1):238-46. PubMed ID: 15927585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interfacial rheology of asphaltenes at oil-water interfaces and interpretation of the equation of state.
    Rane JP; Pauchard V; Couzis A; Banerjee S
    Langmuir; 2013 Apr; 29(15):4750-9. PubMed ID: 23506138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the determination of molecular weight distributions of asphaltenes and their aggregates in laser desorption ionization experiments.
    Hortal AR; Martínez-Haya B; Lobato MD; Pedrosa JM; Lago S
    J Mass Spectrom; 2006 Jul; 41(7):960-8. PubMed ID: 16810644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.