These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 15779941)

  • 121. Effect of interfacial rheology on model emulsion coalescence I. Interfacial rheology.
    Yarranton HW; Sztukowski DM; Urrutia P
    J Colloid Interface Sci; 2007 Jun; 310(1):246-52. PubMed ID: 17306818
    [TBL] [Abstract][Full Text] [Related]  

  • 122. Effect of nonionic surfactants on the solubilization of alachlor.
    Xiarchos I; Doulia D
    J Hazard Mater; 2006 Aug; 136(3):882-8. PubMed ID: 16515834
    [TBL] [Abstract][Full Text] [Related]  

  • 123. Probing Interfacial Structure and Dynamics of Model and Natural Asphaltenes at Fluid-Fluid Interfaces.
    Fajardo-Rojas F; Pradilla D; Alvarez Solano OA; Samaniuk J
    Langmuir; 2020 Jul; 36(27):7965-7979. PubMed ID: 32580555
    [TBL] [Abstract][Full Text] [Related]  

  • 124. Asphaltene Adsorption from Toluene onto Silica through Thin Water Layers.
    Hu X; Yutkin MP; Hassan S; Wu J; Prausnitz JM; Radke CJ
    Langmuir; 2019 Jan; 35(2):428-434. PubMed ID: 30540194
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Coarse-grained molecular dynamics simulation of the aggregation properties of multiheaded cationic surfactants in water.
    Samanta SK; Bhattacharya S; Maiti PK
    J Phys Chem B; 2009 Oct; 113(41):13545-50. PubMed ID: 19775096
    [TBL] [Abstract][Full Text] [Related]  

  • 126. Linear solvation energy relationships of anionic dimeric surfactants in micellar electrokinetic chromatography I. Effect of the length of a hydrophobic spacer.
    Van Biesen G; Bottaro CS
    J Chromatogr A; 2007 Jul; 1157(1-2):437-45. PubMed ID: 17482628
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Adsorption of asphaltenes from heavy oil onto in situ prepared NiO nanoparticles.
    Abu Tarboush BJ; Husein MM
    J Colloid Interface Sci; 2012 Jul; 378(1):64-9. PubMed ID: 22560489
    [TBL] [Abstract][Full Text] [Related]  

  • 128. An investigation of dynamic surface tension, critical micelle concentration, and aggregation number of three nonionic surfactants using NMR, time-resolved fluorescence quenching, and maximum bubble pressure tensiometry.
    Kjellin UR; Reimer J; Hansson P
    J Colloid Interface Sci; 2003 Jun; 262(2):506-15. PubMed ID: 16256632
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Adsorption isotherms of nonionic surfactants in SBA-15 measured by micro-column chromatography.
    Findenegg GH; Eltekov AY
    J Chromatogr A; 2007 May; 1150(1-2):236-40. PubMed ID: 17306814
    [TBL] [Abstract][Full Text] [Related]  

  • 130. Aggregation behavior of fluorocarbon and hydrocarbon cationic surfactant mixtures: a study of 1H NMR and 19F NMR.
    Dong S; Xu G; Hoffmann H
    J Phys Chem B; 2008 Aug; 112(31):9371-8. PubMed ID: 18613719
    [TBL] [Abstract][Full Text] [Related]  

  • 131. Molecular Simulations on the Coalescence of Water-in-Oil Emulsion Droplets with Non-ionic Surfactant and Model Asphaltene.
    Sun X; Zeng H; Tang T
    Langmuir; 2023 Feb; 39(6):2233-2245. PubMed ID: 36734483
    [TBL] [Abstract][Full Text] [Related]  

  • 132. Microcalorimetric study on micellization of nonionic surfactants with a benzene ring or adamantane in their hydrophobic chains.
    Li Y; Reeve J; Wang Y; Thomas RK; Wang J; Yan H
    J Phys Chem B; 2005 Aug; 109(33):16070-4. PubMed ID: 16853041
    [TBL] [Abstract][Full Text] [Related]  

  • 133. Adsorption and mobility of a lipase at a hydrophobic surface in the presence of surfactants.
    Sonesson AW; Elofsson UM; Brismar H; Callisen TH
    Langmuir; 2006 Jun; 22(13):5810-7. PubMed ID: 16768512
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Aggregation behavior of hexadecyltrimethylammonium surfactants with various counterions in aqueous solution.
    Jiang N; Li P; Wang Y; Wang J; Yan H; Thomas RK
    J Colloid Interface Sci; 2005 Jun; 286(2):755-60. PubMed ID: 15897094
    [TBL] [Abstract][Full Text] [Related]  

  • 135. Aggregation and solubility behavior of asphaltenes and their subfractions.
    Spiecker PM; Gawrys KL; Kilpatrick PK
    J Colloid Interface Sci; 2003 Nov; 267(1):178-93. PubMed ID: 14554184
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Revisiting the flocculation kinetics of destabilized asphaltenes.
    Vilas Bôas Fávero C; Maqbool T; Hoepfner M; Haji-Akbari N; Fogler HS
    Adv Colloid Interface Sci; 2017 Jun; 244():267-280. PubMed ID: 27432552
    [TBL] [Abstract][Full Text] [Related]  

  • 137. Effect of Various Isolated Microbial Consortiums on the Biodegradation Process of Precipitated Asphaltenes from Crude Oil.
    Shahebrahimi Y; Fazlali A; Motamedi H; Kord S; Mohammadi AH
    ACS Omega; 2020 Feb; 5(7):3131-3143. PubMed ID: 32118129
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Preparation and Evaluation of Monodisperse Nonionic Surfactants Based on Fluorine-Containing Dicarbamates.
    Mureau N; Trabelsi H; Guittard F; Geribaldi S
    J Colloid Interface Sci; 2000 Sep; 229(2):440-444. PubMed ID: 10985823
    [TBL] [Abstract][Full Text] [Related]  

  • 139. Molecular orientation of asphaltenes and PAH model compounds in Langmuir-Blodgett films using sum frequency generation spectroscopy.
    Andrews AB; McClelland A; Korkeila O; Demidov A; Krummel A; Mullins OC; Chen Z
    Langmuir; 2011 May; 27(10):6049-58. PubMed ID: 21491945
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Measurement of asphaltenes using optical spectroscopy on a microfluidic platform.
    Schneider MH; Sieben VJ; Kharrat AM; Mostowfi F
    Anal Chem; 2013 May; 85(10):5153-60. PubMed ID: 23614817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.