These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15780251)

  • 1. The external-anomeric torsional effect.
    Lii JH; Chen KH; Johnson GP; French AD; Allinger NL
    Carbohydr Res; 2005 Apr; 340(5):853-62. PubMed ID: 15780251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alcohols, ethers, carbohydrates, and related compounds. III. The 1,2-dimethoxyethane system.
    Lii JH; Chen KH; Grindley TB; Allinger NL
    J Comput Chem; 2003 Sep; 24(12):1490-503. PubMed ID: 12868112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alcohols, ethers, carbohydrates, and related compounds. II. The anomeric effect.
    Lii JH; Chen KH; Durkin KA; Allinger NL
    J Comput Chem; 2003 Sep; 24(12):1473-89. PubMed ID: 12868111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alcohols, ethers, carbohydrates, and related compounds. IV. Carbohydrates.
    Lii JH; Chen KH; Allinger NL
    J Comput Chem; 2003 Sep; 24(12):1504-13. PubMed ID: 12868113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methyl rotation barriers in proteins from 2H relaxation data. Implications for protein structure.
    Xue Y; Pavlova MS; Ryabov YE; Reif B; Skrynnikov NR
    J Am Chem Soc; 2007 May; 129(21):6827-38. PubMed ID: 17488010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational spectrum of a chiral alpha-hydroxyester: conformation stability and internal rotation barrier heights of methyl lactate.
    Borho N; Xu Y
    Phys Chem Chem Phys; 2007 Mar; 9(11):1324-8. PubMed ID: 17347705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic properties (enthalpy, bond energy, entropy, and heat capacity) and internal rotor potentials of vinyl alcohol, methyl vinyl ether, and their corresponding radicals.
    da Silva G; Kim CH; Bozzelli JW
    J Phys Chem A; 2006 Jun; 110(25):7925-34. PubMed ID: 16789782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational stability from temperature-dependent fourier transform infrared spectra of noble gas solutions, r0 structural parameters, and barriers to internal rotation for ethylamine.
    Durig JR; Zheng C; Gounev TK; Herrebout WA; van der Veken BJ
    J Phys Chem A; 2006 May; 110(17):5674-84. PubMed ID: 16640362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational analysis and rotational barriers of alkyl- and phenyl-substituted urea derivatives.
    Bryantsev VS; Firman TK; Hay BP
    J Phys Chem A; 2005 Feb; 109(5):832-42. PubMed ID: 16838954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ring strain energy in the cyclooctyl system. The effect of strain energy on [3 + 2] cycloaddition reactions with azides.
    Bach RD
    J Am Chem Soc; 2009 Apr; 131(14):5233-43. PubMed ID: 19301865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular structure and internal rotation in 2,3,5,6-tetrafluoroanisole as studied by gas-phase electron diffraction and quantum chemical calculations.
    Belyakov AV; Kieninger M; Cachau RE; Ventura ON; Oberhammer H
    J Phys Chem A; 2005 Jan; 109(2):394-9. PubMed ID: 16833358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medium effect on the rotational barrier of carbamates and its sulfur congeners.
    Pontes RM; Basso EA; dos Santos FP
    J Org Chem; 2007 Mar; 72(6):1901-11. PubMed ID: 17305395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational preferences and basicities of monofluorinated cyclopropyl amines in comparison to cyclopropylamine and 2-fluoroethylamine.
    Hyla-Kryspin I; Grimme S; Hruschka S; Haufe G
    Org Biomol Chem; 2008 Nov; 6(22):4167-75. PubMed ID: 18972047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 13C NMR, infrared, solvation and theoretical investigation of the conformational isomerism in 1-haloacetones (X = Cl, Br and I).
    Doi TR; Yoshinaga F; Tormena CF; Rittner R; Abraham RJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jul; 61(9):2221-30. PubMed ID: 15911415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enthalpies of formation, bond dissociation energies and reaction paths for the decomposition of model biofuels: ethyl propanoate and methyl butanoate.
    El-Nahas AM; Navarro MV; Simmie JM; Bozzelli JW; Curran HJ; Dooley S; Metcalfe W
    J Phys Chem A; 2007 May; 111(19):3727-39. PubMed ID: 17286391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals.
    da Silva G; Bozzelli JW
    J Phys Chem A; 2006 Dec; 110(48):13058-67. PubMed ID: 17134166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why is poly(oxyethylene) soluble in water? Evidence from the thermodynamic profile of the conformational equilibria of 1,2-dimethoxyethane and dimethoxymethane revealed by Raman spectroscopy.
    Wada R; Fujimoto K; Kato M
    J Phys Chem B; 2014 Oct; 118(42):12223-31. PubMed ID: 25265325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The extremely flat torsional potential energy surface of oxalyl chloride.
    Kim S; Wheeler SE; Deyonker NJ; Schaefer HF
    J Chem Phys; 2005 Jun; 122(23):234313. PubMed ID: 16008447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational energies for 2-substituted butanes.
    Wiberg KB; Wang YG
    J Comput Chem; 2004 Jul; 25(9):1127-32. PubMed ID: 15116356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.