BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15780253)

  • 1. Ramachandran free-energy surfaces for disaccharides: trehalose, a case study.
    Kuttel MM; Naidoo KJ
    Carbohydr Res; 2005 Apr; 340(5):875-9. PubMed ID: 15780253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy surfaces for the alpha(1 --> 4)-glycosidic linkage: implications for polysaccharide solution structure and dynamics.
    Kuttel MM; Naidoo KJ
    J Phys Chem B; 2005 Apr; 109(15):7468-74. PubMed ID: 16851857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling.
    Perić-Hassler L; Hansen HS; Baron R; Hünenberger PH
    Carbohydr Res; 2010 Aug; 345(12):1781-801. PubMed ID: 20576257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational free energy maps for globobiose (alpha-D-Galp-(1-->4)-beta-D-Galp) in implicit and explicit aqueous solution.
    Kuttel MM
    Carbohydr Res; 2008 May; 343(6):1091-8. PubMed ID: 18291354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the backbone dihedral free-energy surfaces in small peptides in solution using adiabatic free-energy dynamics.
    Rosso L; Abrams JB; Tuckerman ME
    J Phys Chem B; 2005 Mar; 109(9):4162-7. PubMed ID: 16851477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A C-linked glycomimetic in the gas phase and in solution: synthesis and conformation of the disaccharide Manalpha(1,6)-C-ManalphaOPh.
    Drouin L; Stanca-Kaposta EC; Saundh P; Fairbanks AJ; Kemper S; Claridge TD; Simons JP
    Chemistry; 2009; 15(16):4057-69. PubMed ID: 19283818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The conformational free-energy map for solvated neocarrabiose.
    Ueda K; Ueda T; Sato T; Nakayama H; Brady JW
    Carbohydr Res; 2004 Aug; 339(11):1953-60. PubMed ID: 15261588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MM3 potential energy surfaces of trisaccharide models of lambda-, mu-, and nu-carrageenans.
    Stortz CA
    Carbohydr Res; 2006 Nov; 341(15):2531-42. PubMed ID: 16952344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of glycosidic linkage neighbors on disaccharide conformation in vacuum.
    Campen RK; Verde AV; Kubicki JD
    J Phys Chem B; 2007 Dec; 111(49):13775-85. PubMed ID: 18020323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT studies of the disaccharide, alpha-maltose: relaxed isopotential maps.
    Schnupf U; Willett JL; Bosma WB; Momany FA
    Carbohydr Res; 2007 Nov; 342(15):2270-85. PubMed ID: 17669381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of a cyclic-beta-(1-->2) glucan containing an alpha-(1-->6) linkage as a 'molecular alleviator' for the macrocyclic conformational strain.
    Kim H; Jeong K; Cho KW; Paik SR; Jung S
    Carbohydr Res; 2006 Jun; 341(8):1011-9. PubMed ID: 16546149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The (alpha-1,6) glycosidic bond of isomaltose: a tricky system for theoretical conformational studies.
    Javaroni F; Ferreira AB; da Silva CO
    Carbohydr Res; 2009 Jul; 344(10):1235-47. PubMed ID: 19508914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the conformational energy landscape of glassy disaccharides by cross polarization magic angle spinning 13C nuclear magnetic resonance and numerical simulations. II. Enhanced molecular flexibility in amorphous trehalose.
    Lefort R; Bordat P; Cesaro A; Descamps M
    J Chem Phys; 2007 Jan; 126(1):014511. PubMed ID: 17212504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational preferences of alpha,alpha-trehalose in gas phase and aqueous solution.
    Nunes SC; Jesus AJ; Moreno MJ; Eusébio ME
    Carbohydr Res; 2010 Sep; 345(14):2048-59. PubMed ID: 20709315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of mean force conformational energy maps for disaccharide linkages of the Burkholderia multivorans exopolysaccharide C1576 in aqueous solution.
    Jou IA; Yoo AS; Dionne EV; Brady JW
    Carbohydr Res; 2023 Feb; 524():108741. PubMed ID: 36716692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MM3 potential energy surfaces of alpha-3-linked L-fucobiose and fucotriose and their sulfated counterparts.
    Stortz CA
    Carbohydr Res; 2004 Oct; 339(14):2381-90. PubMed ID: 15388353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical study on the intermolecular complex formation between trehalose and benzene compounds in aqueous solution.
    Sakakura K; Okabe A; Oku K; Sakurai M
    J Phys Chem B; 2011 Aug; 115(32):9823-30. PubMed ID: 21740054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of trehalose as a 'dynamic reducer' for solvent water molecules in the hydration shell.
    Choi Y; Cho KW; Jeong K; Jung S
    Carbohydr Res; 2006 Jun; 341(8):1020-8. PubMed ID: 16546147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ramachandran-type plots for glycosidic linkages: Examples from molecular dynamic simulations using the Glycam06 force field.
    Salisburg AM; Deline AL; Lexa KW; Shields GC; Kirschner KN
    J Comput Chem; 2009 Apr; 30(6):910-21. PubMed ID: 18785152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigations on the mobility of the glycosidic linkage in sucrose by study of the phase space structure of a two-degrees of freedom model.
    Longhi G; Malandrino M; Abbate S
    J Mol Graph Model; 2000 Apr; 18(2):153-62, 169-71. PubMed ID: 10994519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.