BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1719 related articles for article (PubMed ID: 15780432)

  • 41. The incretins: a link between nutrients and well-being.
    Burcelin R
    Br J Nutr; 2005 Apr; 93 Suppl 1():S147-56. PubMed ID: 15877888
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Harnessing the therapeutic potential of glucagon-like peptide-1: a critical review.
    Baggio LL; Drucker DJ
    Treat Endocrinol; 2002; 1(2):117-25. PubMed ID: 15765627
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Incretin actions and consequences of incretin-based therapies: lessons from complementary animal models.
    Renner S; Blutke A; Streckel E; Wanke R; Wolf E
    J Pathol; 2016 Jan; 238(2):345-58. PubMed ID: 26455904
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist tirzepatide: a novel cardiometabolic therapeutic prospect.
    Fisman EZ; Tenenbaum A
    Cardiovasc Diabetol; 2021 Nov; 20(1):225. PubMed ID: 34819089
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].
    Escalada FJ
    Med Clin (Barc); 2014 Sep; 143 Suppl 2():2-7. PubMed ID: 25437458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of the insulinotropic and glucose-lowering actions of zebrafish GIP in mammalian systems: Evidence for involvement of the GLP-1 receptor.
    Graham GV; Conlon JM; Abdel-Wahab YH; Gault VA; Flatt PR
    Peptides; 2018 Feb; 100():182-189. PubMed ID: 29157578
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Treatment of type 2 diabetes mellitus with agonists of the GLP-1 receptor or DPP-IV inhibitors.
    Holst JJ
    Expert Opin Emerg Drugs; 2004 May; 9(1):155-66. PubMed ID: 15155141
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes.
    Gautier JF; Choukem SP; Girard J
    Diabetes Metab; 2008 Feb; 34 Suppl 2():S65-72. PubMed ID: 18640588
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glucagon-like peptide-1, a gastrointestinal hormone with a pharmaceutical potential.
    Holst JJ
    Curr Med Chem; 1999 Nov; 6(11):1005-17. PubMed ID: 10519910
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biology of incretins: GLP-1 and GIP.
    Baggio LL; Drucker DJ
    Gastroenterology; 2007 May; 132(6):2131-57. PubMed ID: 17498508
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The alpha-7 nicotinic acetylcholine receptor agonist GTS-21 engages the glucagon-like peptide-1 incretin hormone axis to lower levels of blood glucose in db/db mice.
    Meng Q; Chepurny OG; Leech CA; Pruekprasert N; Molnar ME; Collier JJ; Cooney RN; Holz GG
    Diabetes Obes Metab; 2022 Jul; 24(7):1255-1266. PubMed ID: 35293666
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and β cell preservation.
    Yabe D; Seino Y
    Prog Biophys Mol Biol; 2011 Nov; 107(2):248-56. PubMed ID: 21820006
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential chemistry (structure), mechanism of action, and pharmacology of GLP-1 receptor agonists and DPP-4 inhibitors.
    Neumiller JJ
    J Am Pharm Assoc (2003); 2009; 49 Suppl 1():S16-29. PubMed ID: 19801361
    [TBL] [Abstract][Full Text] [Related]  

  • 54. GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion.
    Cani PD; Holst JJ; Drucker DJ; Delzenne NM; Thorens B; Burcelin R; Knauf C
    Mol Cell Endocrinol; 2007 Sep; 276(1-2):18-23. PubMed ID: 17681422
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions.
    Nauck MA; Meier JJ
    Lancet Diabetes Endocrinol; 2016 Jun; 4(6):525-36. PubMed ID: 26876794
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls.
    Drucker DJ
    Diabetes; 2013 Oct; 62(10):3316-23. PubMed ID: 23818527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the physiology of GIP and GLP-1.
    Holst JJ
    Horm Metab Res; 2004; 36(11-12):747-54. PubMed ID: 15655703
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Incretin actions beyond the pancreas: lessons from knockout mice.
    Yabe D; Seino Y
    Curr Opin Pharmacol; 2013 Dec; 13(6):946-53. PubMed ID: 24095602
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of gastric inhibitory polypeptide, glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists on Bone Cell Metabolism.
    Hansen MSS; Tencerova M; Frølich J; Kassem M; Frost M
    Basic Clin Pharmacol Toxicol; 2018 Jan; 122(1):25-37. PubMed ID: 28722834
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glucagon-like peptide-1 structure, function and potential use for NIDDM.
    Gefel D; Barg Y; Zimlichman R
    Isr J Med Sci; 1997 Oct; 33(10):690-5. PubMed ID: 9397146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 86.