BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1721 related articles for article (PubMed ID: 15780432)

  • 61. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice.
    Maida A; Lamont BJ; Cao X; Drucker DJ
    Diabetologia; 2011 Feb; 54(2):339-49. PubMed ID: 20972533
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Novel extrapancreatic effects of incretin.
    Yamada Y; Tsukiyama K; Sato T; Shimizu T; Fujita H; Narita T
    J Diabetes Investig; 2016 Apr; 7 Suppl 1(Suppl 1):76-9. PubMed ID: 27186360
    [TBL] [Abstract][Full Text] [Related]  

  • 63. beta-cell failure in diabetes and preservation by clinical treatment.
    Wajchenberg BL
    Endocr Rev; 2007 Apr; 28(2):187-218. PubMed ID: 17353295
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Incretin hormones in the treatment of type 2 diabetes. Part I: influence of insulinotropic gut-derived hormones (incretins) on glucose metabolism].
    Matuszek B; Lenart-Lipińska M; Nowakowski A
    Endokrynol Pol; 2007; 58(6):522-8. PubMed ID: 18205109
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparative effects of GLP-1 and GIP on cAMP production, insulin secretion, and in vivo antidiabetic actions following substitution of Ala8/Ala2 with 2-aminobutyric acid.
    Green BD; Gault VA; Flatt PR; Harriott P; Greer B; O'Harte FP
    Arch Biochem Biophys; 2004 Aug; 428(2):136-43. PubMed ID: 15246869
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Gastric inhibitory polypeptide analogues: do they have a therapeutic role in diabetes mellitus similar to that of glucagon-like Peptide-1?
    Holst JJ
    BioDrugs; 2002; 16(3):175-81. PubMed ID: 12102645
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Update on incretin hormones.
    Phillips LK; Prins JB
    Ann N Y Acad Sci; 2011 Dec; 1243():E55-74. PubMed ID: 22545749
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pharmacological characterization of human incretin receptor missense variants.
    Fortin JP; Schroeder JC; Zhu Y; Beinborn M; Kopin AS
    J Pharmacol Exp Ther; 2010 Jan; 332(1):274-80. PubMed ID: 19841474
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A novel glucagon-like peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice.
    Gault VA; Bhat VK; Irwin N; Flatt PR
    J Biol Chem; 2013 Dec; 288(49):35581-91. PubMed ID: 24165127
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A DPP-IV-resistant triple-acting agonist of GIP, GLP-1 and glucagon receptors with potent glucose-lowering and insulinotropic actions in high-fat-fed mice.
    Bhat VK; Kerr BD; Vasu S; Flatt PR; Gault VA
    Diabetologia; 2013 Jun; 56(6):1417-24. PubMed ID: 23503814
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Gluco-incretin hormones in insulin secretion and diabetes].
    Thorens B
    Med Sci (Paris); 2003; 19(8-9):860-3. PubMed ID: 14593618
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans.
    Holst JJ; Gromada J
    Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E199-206. PubMed ID: 15271645
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP.
    Theodorakis MJ; Carlson O; Michopoulos S; Doyle ME; Juhaszova M; Petraki K; Egan JM
    Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E550-9. PubMed ID: 16219666
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structurally modified analogues of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) as future antidiabetic agents.
    Green BD; Gault VA; O'harte FP; Flatt PR
    Curr Pharm Des; 2004; 10(29):3651-62. PubMed ID: 15579061
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The pharmacologic basis for clinical differences among GLP-1 receptor agonists and DPP-4 inhibitors.
    Morales J
    Postgrad Med; 2011 Nov; 123(6):189-201. PubMed ID: 22104467
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Insulin Response to Oral Glucose in GIP and GLP-1 Receptor Knockout Mice: Review of the Literature and Stepwise Glucose Dose Response Studies in Female Mice.
    Ahrén B; Yamada Y; Seino Y
    Front Endocrinol (Lausanne); 2021; 12():665537. PubMed ID: 34122340
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Novel therapeutics for type 2 diabetes: incretin hormone mimetics (glucagon-like peptide-1 receptor agonists) and dipeptidyl peptidase-4 inhibitors.
    Verspohl EJ
    Pharmacol Ther; 2009 Oct; 124(1):113-38. PubMed ID: 19545590
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide stimulate release of substance P from TRPV1- and TRPA1-expressing sensory nerves.
    Mayer F; Gunawan AL; Tso P; Aponte GW
    Am J Physiol Gastrointest Liver Physiol; 2020 Jul; 319(1):G23-G35. PubMed ID: 32421358
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Incretin-based treatment of type 2 diabetes: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.
    Deacon CF
    Diabetes Obes Metab; 2007 Sep; 9 Suppl 1():23-31. PubMed ID: 17877544
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The incretin notion and its relevance to diabetes.
    Habener JF
    Endocrinol Metab Clin North Am; 1993 Dec; 22(4):775-94. PubMed ID: 8125072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 87.