These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 15780718)
1. Peptide mimics as surrogate immunogens of mosquito midgut carbohydrate malaria transmission blocking targets. Dinglasan RR; Porter-Kelley JM; Alam U; Azad AF Vaccine; 2005 Apr; 23(21):2717-24. PubMed ID: 15780718 [TBL] [Abstract][Full Text] [Related]
2. Monoclonal antibody MG96 completely blocks Plasmodium yoelii development in Anopheles stephensi. Dinglasan RR; Fields I; Shahabuddin M; Azad AF; Sacci JB Infect Immun; 2003 Dec; 71(12):6995-7001. PubMed ID: 14638789 [TBL] [Abstract][Full Text] [Related]
3. An antibody against an Anopheles albimanus midgut myosin reduces Plasmodium berghei oocyst development. Lecona-Valera AN; Tao D; Rodríguez MH; López T; Dinglasan RR; Rodríguez MC Parasit Vectors; 2016 May; 9(1):274. PubMed ID: 27165123 [TBL] [Abstract][Full Text] [Related]
4. Effect of anti-mosquito midgut antibodies on development of malaria parasite, Plasmodium vivax and fecundity in vector mosquito Anopheles culicifacies (Diptera: culicidae). Chugh M; Adak T; Sehrawat N; Gakhar SK Indian J Exp Biol; 2011 Apr; 49(4):245-53. PubMed ID: 21614887 [TBL] [Abstract][Full Text] [Related]
5. Sugar epitopes as potential universal disease transmission blocking targets. Dinglasan RR; Valenzuela JG; Azad AF Insect Biochem Mol Biol; 2005 Jan; 35(1):1-10. PubMed ID: 15607650 [TBL] [Abstract][Full Text] [Related]
6. Blocking of malaria parasite development in mosquito and fecundity reduction by midgut antibodies in Anopheles stephensi (Diptera: Culicidae). Suneja A; Gulia M; Gakhar SK Arch Insect Biochem Physiol; 2003 Feb; 52(2):63-70. PubMed ID: 12529861 [TBL] [Abstract][Full Text] [Related]
8. Midgut specific immune response of vector mosquito Anopheles stephensi to malaria parasite Plasmodium. Gakhar SK; Shandilya HK Indian J Exp Biol; 2001 Mar; 39(3):287-90. PubMed ID: 11495292 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of malaria parasite development in mosquitoes by anti-mosquito-midgut antibodies. Lal AA; Schriefer ME; Sacci JB; Goldman IF; Louis-Wileman V; Collins WE; Azad AF Infect Immun; 1994 Jan; 62(1):316-8. PubMed ID: 8262645 [TBL] [Abstract][Full Text] [Related]
10. Cloning, characterization and transmission blocking potential of midgut carboxypeptidase A in Anopheles stephensi. VenkatRao V; Kumar SK; Sridevi P; Muley VY; Chaitanya RK Acta Trop; 2017 Apr; 168():21-28. PubMed ID: 28087198 [TBL] [Abstract][Full Text] [Related]
11. The Anopheles-midgut APN1 structure reveals a new malaria transmission-blocking vaccine epitope. Atkinson SC; Armistead JS; Mathias DK; Sandeu MM; Tao D; Borhani-Dizaji N; Tarimo BB; Morlais I; Dinglasan RR; Borg NA Nat Struct Mol Biol; 2015 Jul; 22(7):532-9. PubMed ID: 26075520 [TBL] [Abstract][Full Text] [Related]
12. Effect of anti-mosquito antibodies on the infectivity of the rodent malaria parasite Plasmodium berghei to Anopheles farauti. Ramasamy MS; Ramasamy R Med Vet Entomol; 1990 Apr; 4(2):161-6. PubMed ID: 2132980 [TBL] [Abstract][Full Text] [Related]
14. Flipping the paradigm on malaria transmission-blocking vaccines. Dinglasan RR; Jacobs-Lorena M Trends Parasitol; 2008 Aug; 24(8):364-70. PubMed ID: 18599352 [TBL] [Abstract][Full Text] [Related]
15. The use of transgenic Plasmodium berghei expressing the Plasmodium vivax antigen P25 to determine the transmission-blocking activity of sera from malaria vaccine trials. Ramjanee S; Robertson JS; Franke-Fayard B; Sinha R; Waters AP; Janse CJ; Wu Y; Blagborough AM; Saul A; Sinden RE Vaccine; 2007 Jan; 25(5):886-94. PubMed ID: 17049690 [TBL] [Abstract][Full Text] [Related]
16. Interrupting malaria transmission by genetic manipulation of anopheline mosquitoes. Jacobs-Lorena M J Vector Borne Dis; 2003; 40(3-4):73-7. PubMed ID: 15119075 [TBL] [Abstract][Full Text] [Related]
17. Malaria parasite development in mosquitoes. Beier JC Annu Rev Entomol; 1998; 43():519-43. PubMed ID: 9444756 [TBL] [Abstract][Full Text] [Related]
18. CTRP is essential for mosquito infection by malaria ookinetes. Dessens JT; Beetsma AL; Dimopoulos G; Wengelnik K; Crisanti A; Kafatos FC; Sinden RE EMBO J; 1999 Nov; 18(22):6221-7. PubMed ID: 10562534 [TBL] [Abstract][Full Text] [Related]
19. [Effect of anti-mosquito-midgut antibodies on the development of oocysts of Plasmodium yoelii in Anopheles stephensi]. Wei QF; Gao XZ Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2000; 18(4):197-9. PubMed ID: 12567656 [TBL] [Abstract][Full Text] [Related]
20. Immunopotentiation by Lymph-Node Targeting of a Malaria Transmission-Blocking Nanovaccine. Howard GP; Bender NG; Khare P; López-Gutiérrez B; Nyasembe V; Weiss WJ; Simecka JW; Hamerly T; Mao HQ; Dinglasan RR Front Immunol; 2021; 12():729086. PubMed ID: 34512663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]