These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 15780999)

  • 1. The discovery of four distinct glutamate dehydrogenase genes in a strain of Halobacterium salinarum.
    Ingoldsby LM; Geoghegan KF; Hayden BM; Engel PC
    Gene; 2005 Apr; 349():237-44. PubMed ID: 15780999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate dehydrogenase of Halobacterium salinarum: evidence that the gene sequence currently assigned to the NADP+-dependent enzyme is in fact that of the NAD+-dependent glutamate dehydrogenase.
    Hayden BM; Bonete MJ; Brown PE; Moir AJ; Engel PC
    FEMS Microbiol Lett; 2002 May; 211(1):37-41. PubMed ID: 12052548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gdhB gene of Pseudomonas aeruginosa encodes an arginine-inducible NAD(+)-dependent glutamate dehydrogenase which is subject to allosteric regulation.
    Lu CD; Abdelal AT
    J Bacteriol; 2001 Jan; 183(2):490-9. PubMed ID: 11133942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene cloning and characterization of the very large NAD-dependent l-glutamate dehydrogenase from the psychrophile Janthinobacterium lividum, isolated from cold soil.
    Kawakami R; Sakuraba H; Ohshima T
    J Bacteriol; 2007 Aug; 189(15):5626-33. PubMed ID: 17526698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADP+-dependent glutamate dehydrogenase in the Antarctic psychrotolerant bacterium Psychrobacter sp. TAD1. Characterization, protein and DNA sequence, and relationship to other glutamate dehydrogenases.
    Di Fraia R; Wilquet V; Ciardiello MA; Carratore V; Antignani A; Camardella L; Glansdorff N; Di Prisco G
    Eur J Biochem; 2000 Jan; 267(1):121-31. PubMed ID: 10601858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1.
    Pfeiffer F; Schuster SC; Broicher A; Falb M; Palm P; Rodewald K; Ruepp A; Soppa J; Tittor J; Oesterhelt D
    Genomics; 2008 Apr; 91(4):335-46. PubMed ID: 18313895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variations in the multiple tbp genes in different Halobacterium salinarum strains and their expression during growth.
    Teufel K; Bleiholder A; Griesbach T; Pfeifer F
    Arch Microbiol; 2008 Sep; 190(3):309-18. PubMed ID: 18506423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties and molecular evolution of human GLUD2 (neural and testicular tissue-specific) glutamate dehydrogenase.
    Kanavouras K; Mastorodemos V; Borompokas N; Spanaki C; Plaitakis A
    J Neurosci Res; 2007 Apr; 85(5):1101-9. PubMed ID: 17253646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Molecular cloning and amino acid composition analysis of a halophilic thiolase gene].
    Liu T; Zhou P
    Wei Sheng Wu Xue Bao; 2002 Aug; 42(4):406-10. PubMed ID: 12557544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of crtI homolog from extremely halophilic archaeon Haloarcula japonica strain TR-1.
    Yatsunami R; Takaichi S; Nakamura S
    Nucleic Acids Symp Ser (Oxf); 2004; (48):193-4. PubMed ID: 17150544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics of Halophilic archaea.
    Joo WA; Kim CW
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):237-50. PubMed ID: 15652813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and expression of the cathepsin F-like cysteine protease gene in Escherichia coli and its characterization.
    Joo HS; Koo KB; Park KI; Bae SH; Yun JW; Chang CS; Choi JW
    J Microbiol; 2007 Apr; 45(2):158-67. PubMed ID: 17483802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the gene encoding glutamate dehydrogenase ( gdhA) from the ruminal bacterium Ruminococcus flavefaciens FD-1.
    Antonopoulos DA; Aminov RI; Duncan PA; White BA; Mackie RI
    Arch Microbiol; 2003 Mar; 179(3):184-90. PubMed ID: 12610723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspergillus terreus NADP-glutamate dehydrogenase is kinetically distinct from the allosteric enzyme of other Aspergilli.
    Choudhury R; Punekar NS
    Mycol Res; 2009 Oct; 113(Pt 10):1121-6. PubMed ID: 19619653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An NAD(+)-dependent glutamate dehydrogenase cloned from the ruminal ciliate protozoan, Entodinium caudatum.
    Newbold CJ; McEwan NR; Calza RE; Chareyron EN; Duval SM; Eschenlauer SC; McIntosh FM; Nelson N; Travis AJ; Wallace RJ
    FEMS Microbiol Lett; 2005 Jun; 247(2):113-21. PubMed ID: 15921862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Purification and cloning of an antifungal protein from the rice diseases controlling bacterial strain Paenibacillus polymyxa WY110].
    Yao WL; Wang YS; Han JG; Li LB; Song W
    Yi Chuan Xue Bao; 2004 Sep; 31(9):878-87. PubMed ID: 15493136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The NAD(P)H-dependent glutamate dehydrogenase activities of Prevotella ruminicola B(1)4 can be attributed to one enzyme (GdhA), and gdhA expression is regulated in response to the nitrogen source available for growth.
    Wen Z; Morrison M
    Appl Environ Microbiol; 1996 Oct; 62(10):3826-33. PubMed ID: 8837439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD+-dependent glutamate dehydrogenase of the edible mushroom Agaricus bisporus: biochemical and molecular characterization.
    Kersten MA; Müller Y; Baars JJ; Op den Camp HJ; van der Drift C; Van Griensven LJ; Visser J; Schaap PJ
    Mol Gen Genet; 1999 Apr; 261(3):452-62. PubMed ID: 10323225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the primary structure of nuclear and mitochondrial glutamate dehydrogenase from bovine liver.
    McDaniel HG
    Arch Biochem Biophys; 1995 May; 319(1):316-21. PubMed ID: 7771802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of NAD-isocitrate dehydrogenase and glutamate dehydrogenase in rice roots: candidates for providing carbon skeletons to NADH-glutamate synthase.
    Abiko T; Obara M; Ushioda A; Hayakawa T; Hodges M; Yamaya T
    Plant Cell Physiol; 2005 Oct; 46(10):1724-34. PubMed ID: 16120687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.