These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1578125)

  • 1. Differential stem cell contributions to thymocyte succession during development of Xenopus laevis.
    Bechtold TE; Smith PB; Turpen JB
    J Immunol; 1992 May; 148(10):2975-82. PubMed ID: 1578125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precursor immigration and thymocyte succession during larval development and metamorphosis in Xenopus.
    Turpen JB; Smith PB
    J Immunol; 1989 Jan; 142(1):41-7. PubMed ID: 2783326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of hemopoietic lineage of accessory cells in the developing thymus of Xenopus laevis.
    Turpen JB; Smith PB
    J Immunol; 1986 Jan; 136(2):412-21. PubMed ID: 3484489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis.
    Kau CL; Turpen JB
    J Immunol; 1983 Nov; 131(5):2262-6. PubMed ID: 6605382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraembryonic origin of hepatic hematopoiesis in Xenopus laevis.
    Chen XD; Turpen JB
    J Immunol; 1995 Mar; 154(6):2557-67. PubMed ID: 7876532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of ventral blood island mesoderm to hematopoiesis in postmetamorphic and metamorphosis-inhibited Xenopus laevis.
    Rollins-Smith LA; Blair P
    Dev Biol; 1990 Nov; 142(1):178-83. PubMed ID: 2172056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Location of hemopoietic stem cells influences frequency of lymphoid engraftment in Xenopus embryos.
    Turpen JB; Smith PB
    J Immunol; 1989 Dec; 143(11):3455-60. PubMed ID: 2584701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential participation of ventral and dorsolateral mesoderms in the hemopoiesis of Xenopus, as revealed in diploid-triploid or interspecific chimeras.
    MaƩno M; Tochinai S; Katagiri C
    Dev Biol; 1985 Aug; 110(2):503-8. PubMed ID: 4018411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of T cell differentiation in early-thymectomized Xenopus by grafting adult thymuses from either MHC-matched or from partially or totally MHC-mismatched donors.
    Nagata S; Cohen N
    Thymus; 1984; 6(1-2):89-103. PubMed ID: 6235645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny and characterization of mitogen-reactive lymphocytes in the thymus and spleen of the amphibian, Xenopus laevis.
    Williams NH; Cribbin FA; Zettergren LD; Horton JD
    Immunology; 1983 Jun; 49(2):301-9. PubMed ID: 6343233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of hematopoietic stem cells in irradiated mouse thymic lobes. Kinetics and phenotype of progeny.
    Spangrude GJ; Scollay R
    J Immunol; 1990 Dec; 145(11):3661-8. PubMed ID: 2123223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro studies of spontaneous and corticosteroid-induced apoptosis of lymphocyte populations from metamorphosing frogs/RU486 inhibition.
    Barker KS; Davis AT; Li B; Rollins-Smith LA
    Brain Behav Immun; 1997 Jun; 11(2):119-31. PubMed ID: 9299061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. During frog ontogeny, PHA and Con A responsiveness of splenocytes precedes that of thymocytes.
    Rollins-Smith LA; Parsons SC; Cohen N
    Immunology; 1984 Jul; 52(3):491-500. PubMed ID: 6611296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pituitary involvement in T cell renewal during development and metamorphosis of Xenopus laevis.
    Rollins-Smith LA; Davis AT; Reinert LK
    Brain Behav Immun; 2000 Sep; 14(3):185-97. PubMed ID: 10970679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dynamics of apoptosis and proliferation in the rat thymus and spleen during perinatal development].
    Mel'nikova VI; Afanas'eva MA; Sapozhnikov AM; Zakharova LA
    Ontogenez; 2006; 37(4):286-91. PubMed ID: 17022443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T cell differentiation/maturation of CD34+ stem cells from HIV-seropositive hemophiliacs in cultured thymic epithelial fragments.
    Ruiz M; Roodman ST; Bouhasin JD; Knutsen AP
    Stem Cells; 1996 Jan; 14(1):132-45. PubMed ID: 8820959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An amphibian model to test the effects of xenobiotic chemicals on development of the hematopoietic system.
    Rollins-Smith LA; Hopkins BD; Reinert LK
    Environ Toxicol Chem; 2004 Dec; 23(12):2863-7. PubMed ID: 15648761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of early T-cell repopulation in fully xenogeneic chimeras (F344 rat----B10 mouse): evidence for rat T-cell maturation in a xenogeneic mouse thymus.
    Wren SM; Hronakes ML; Ildstad ST
    Surgery; 1991 Aug; 110(2):238-45; discussion 245-6. PubMed ID: 1858033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thymocyte subpopulations during early fetal development in sheep.
    Mackay CR; Maddox JF; Brandon MR
    J Immunol; 1986 Mar; 136(5):1592-9. PubMed ID: 2419408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental analysis of ventral blood island hematopoiesis in Xenopus embryonic chimeras.
    Smith PB; Flajnik MF; Turpen JB
    Dev Biol; 1989 Feb; 131(2):302-12. PubMed ID: 2463944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.